1,222 research outputs found

    Impact of Teat Order on Feed Consumption in Swine from Birth to Nursery

    Get PDF
    A relationship between teat order and feed consumption has been assumed in pigs, but no study has looked at this exact relationship. Pigs were observed shortly after birth to be in either a cranial, middle, or caudal teat positon. Growth performance data and active and total plasma ghrelin concentrations were analyzed at birth, weaning, and at the end of the nursery stage of production to see if a relationship with teat order was present. Overall, no effect of teat order was found on average daily gain, average daily feed intake, gain-to-feed ratio, or body weight among pigs from each section of the udder. Differences did occur during certain stages of nursery, which can be of economic importance to producers. No difference was seen in active or total ghrelin levels or the active-to-total ghrelin ratio in relation to teat order, although there were differences in active and total ghrelin concentrations among the sampling days. Further research should be carried out to investigate what factors would contribute to this data contradicting previous inferences about the relationship of teat order and feed consumption in pigs

    Precursor Ion Independent Algorithm for Top-Down Shotgun Proteomics

    Get PDF
    We present a precursor ion independent top-down algorithm (PIITA) for use in automated assignment of protein identifications from tandem mass spectra of whole proteins. To acquire the data, we utilize data-dependent acquisition to select protein precursor ions eluting from a C4-based HPLC column for collision induced dissociation in the linear ion trap of an LTQ-Orbitrap mass spectrometer. Gas-phase fractionation is used to increase the number of acquired tandem mass spectra, all of which are recorded in the Orbitrap mass analyzer. To identify proteins, the PIITA algorithm compares deconvoluted, deisotoped, observed tandem mass spectra to all possible theoretical tandem mass spectra for each protein in a genomic sequence database without regard for measured parent ion mass. Only after a protein is identified, is any difference in measured and theoretical precursor mass used to identify and locate post-translation modifications. We demonstrate the application of PIITA to data generated via our wet-lab approach on a Salmonella typhimurium outer membrane extract and compare these results to bottom-up analysis. From these data, we identify 154 proteins by top-down analysis, 73 of which were not identified in a parallel bottom-up analysis. We also identify 201 unique isoforms of these 154 proteins at a false discovery rate (FDR) of <1%

    Measuring Basal Force Fluctuations of Debris Flows Using Seismic Recordings and Empirical Green's Functions

    Get PDF
    We present a novel method for measuring the fluctuating basal normal and shear stresses of debris flows by using along‐channel seismic recordings. Our method couples a simple parameterization of a debris flow as a seismic source with direct measurements of seismic path effects using empirical Green's functions generated with a force hammer. We test this method using two large‐scale (8 and 10 m³) experimental flows at the U.S. Geological Survey debris‐flow flume that were recorded by dozens of three‐component seismic sensors. The seismically derived basal stress fluctuations compare well in amplitude and timing to independent force plate measurements within the valid frequency range (15–50 Hz). We show that although the high‐frequency seismic signals provide band‐limited forcing information, there are systematic relations between the fluctuating stresses and independently measured flow properties, especially mean basal shear stress and flow thickness. However, none of the relationships are simple, and since the flow properties also correlate with one another, we cannot isolate a single factor that relates in a simple way to the fluctuating forces. Nevertheless, our observations, most notably the gradually declining ratio of fluctuating to mean basal stresses during flow passage and the distinctive behavior of the coarse, unsaturated flow front, imply that flow style may be a primary control on the conversion of translational to vibrational kinetic energy. This conversion ultimately controls the radiation of high‐frequency seismic waves. Thus, flow style may provide the key to revealing the nature of the relationship between fluctuating forces and other flow properties

    Measuring Basal Force Fluctuations of Debris Flows Using Seismic Recordings and Empirical Green's Functions

    Get PDF
    We present a novel method for measuring the fluctuating basal normal and shear stresses of debris flows by using along‐channel seismic recordings. Our method couples a simple parameterization of a debris flow as a seismic source with direct measurements of seismic path effects using empirical Green's functions generated with a force hammer. We test this method using two large‐scale (8 and 10 m³) experimental flows at the U.S. Geological Survey debris‐flow flume that were recorded by dozens of three‐component seismic sensors. The seismically derived basal stress fluctuations compare well in amplitude and timing to independent force plate measurements within the valid frequency range (15–50 Hz). We show that although the high‐frequency seismic signals provide band‐limited forcing information, there are systematic relations between the fluctuating stresses and independently measured flow properties, especially mean basal shear stress and flow thickness. However, none of the relationships are simple, and since the flow properties also correlate with one another, we cannot isolate a single factor that relates in a simple way to the fluctuating forces. Nevertheless, our observations, most notably the gradually declining ratio of fluctuating to mean basal stresses during flow passage and the distinctive behavior of the coarse, unsaturated flow front, imply that flow style may be a primary control on the conversion of translational to vibrational kinetic energy. This conversion ultimately controls the radiation of high‐frequency seismic waves. Thus, flow style may provide the key to revealing the nature of the relationship between fluctuating forces and other flow properties

    Research Letter

    Get PDF
    Water that pressurizes the base of glaciers and ice sheets enhances glacier velocities and modulates glacial erosion. Predicting ice flow and erosion therefore requires knowledge of subglacial channel evolution, which remains observationally limited.Water that pressurizes the base of glaciers and ice sheets enhances glacier velocities and modulates glacial erosion. Predicting ice flow and erosion therefore requires knowledge of subglacial channel evolution, which remains observationally limited. Here we demonstrate that detailed analysis of seismic ground motion caused by subglacial water flow at Mendenhall Glacier (Alaska) allows for continuous measurement of daily to subseasonal changes in basal water pressure gradient, channel size, and sediment transport. We observe intermittent subglacial water pressure gradient changes during the melt season, at odds with common assumptions of slowly varying, low-pressure channels. These observations indicate that changes in channel size do not keep pace with changes in discharge. This behavior strongly affects glacier dynamics and subglacial channel erosion at Mendenhall Glacier, where episodic periods of high water pressure gradients enhance glacier surface velocity and channel sediment transport by up to 30% and 50%, respectively. We expect the application of this framework to future seismic observations acquired at glaciers worldwide to improve our understanding of subglacial processes.This study was funded by NSF grant EAR-1453263. We thank Flavien Beaud and an anonymous reviewer for thorough reviews that improved the manuscript. We also thank Michael Lamb, Olivier Gagliardini, Jean-Philippe Avouac, Gael Durand and Adrien Gilbert for fruitful discussions.Ye

    Subseasonal changes observed in subglacial channel pressure, size, and sediment transport

    Get PDF
    Water that pressurizes the base of glaciers and ice sheets enhances glacier velocities and modulates glacial erosion. Predicting ice flow and erosion therefore requires knowledge of subglacial channel evolution, which remains observationally limited. Here we demonstrate that detailed analysis of seismic ground motion caused by subglacial water flow at Mendenhall Glacier (Alaska) allows for continuous measurement of daily to subseasonal changes in basal water pressure gradient, channel size, and sediment transport. We observe intermittent subglacial water pressure gradient changes during the melt season, at odds with common assumptions of slowly varying, low-pressure channels. These observations indicate that changes in channel size do not keep pace with changes in discharge. This behavior strongly affects glacier dynamics and subglacial channel erosion at Mendenhall Glacier, where episodic periods of high water pressure gradients enhance glacier surface velocity and channel sediment transport by up to 30% and 50%, respectively. We expect the application of this framework to future seismic observations acquired at glaciers worldwide to improve our understanding of subglacial processes

    Circulating and Dietary Omega‐3 and Omega‐6 Polyunsaturated Fatty Acids and Incidence of CVD in the Multi‐Ethnic Study of Atherosclerosis

    Get PDF
    Background: Dietary guidelines support intake of polyunsaturated fatty acids (PUFAs) in fish and vegetable oils. However, some controversy remains about benefits of PUFAs, and most prior studies have relied on self‐reported dietary assessment in relatively homogeneous populations. Methods and Results: In a multiethnic cohort of 2837 US adults (whites, Hispanics, African Americans, Chinese Americans), plasma phospholipid PUFAs were measured at baseline (2000–2002) using gas chromatography and dietary PUFAs estimated using a food frequency questionnaire. Incident cardiovascular disease (CVD) events (including coronary heart disease and stroke; n=189) were prospectively identified through 2010 during 19 778 person‐years of follow‐up. In multivariable‐adjusted Cox models, circulating n‐3 eicosapentaenoic acid and docosahexaenoic acid were inversely associated with incident CVD, with extreme‐quartile hazard ratios (95% CIs) of 0.49 for eicosapentaenoic acid (0.30 to 0.79; Ptrend=0.01) and 0.39 for docosahexaenoic acid (0.22 to 0.67; Ptrend<0.001). n‐3 Docosapentaenoic acid (DPA) was inversely associated with CVD in whites and Chinese, but not in other race/ethnicities (P‐interaction=0.01). No significant associations with CVD were observed for circulating n‐3 alpha‐linolenic acid or n‐6 PUFA (linoleic acid, arachidonic acid). Associations with CVD of self‐reported dietary PUFA were consistent with those of the PUFA biomarkers. All associations were similar across racial‐ethnic groups, except those of docosapentaenoic acid. Conclusions: Both dietary and circulating eicosapentaenoic acid and docosahexaenoic acid, but not alpha‐linolenic acid or n‐6 PUFA, were inversely associated with CVD incidence. These findings suggest that increased consumption of n‐3 PUFA from seafood may prevent CVD development in a multiethnic population

    Seismic Mapping of Subglacial Hydrology Reveals Previously Undetected Pressurization Event

    Get PDF
    Understanding the dynamic response of glaciers to climate change is vital for assessing water resources and hazards, and subglacial hydrology is a key player in glacier systems. Traditional observations of subglacial hydrology are spatially and temporally limited, but recent seismic deployments on and around glaciers show the potential for comprehensive observation of glacial hydrologic systems. We present results from a high-density seismic deployment spanning the surface of Lemon Creek Glacier, Alaska. Our study coincided with a marginal lake drainage event, which served as a natural experiment for seismic detection of changes in subglacial hydrology. We observed glaciohydraulic tremor across the surface of the glacier that was generated by the subglacial hydrologic system. During the lake drainage, the relative changes in seismic tremor power and water flux are consistent with pressurization of the subglacial system of only the upper part of the glacier. This event was not accompanied by a significant increase in glacier velocity; either some threshold necessary for rapid basal motion was not attained, or, plausibly, the geometry of Lemon Creek Glacier inhibited speedup. This pressurization event would have likely gone undetected without seismic observations, demonstrating the power of cryoseismology in testing assumptions about and mapping the spatial extent of subglacial pressurization.This work was made possible in part by hard work in the field by Margot Vore, Daniel Bowden, Galen Kaip, and the students and staff of the 2017 Juneau Icefield Research Program. We especially thank Matt Beedle for provision of the photogrammetrically-produced DEM of Lake Linda, following lake drainage. This work was also aided by the advice of Mike Gurnis and Rob Clayton. We thank Paul Winberry and two anonymous reviewers for their helpful feedback, which improved this paper greatly. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1745301. This work was made possible in part by a University of Idaho seed grant, #FY18-01. DEM provided by the Polar Geospatial Center under NSF-OPP awards 1043681, 1559691, and 1542736.Ye
    corecore