2,243 research outputs found

    Calcified amorphous tumor of left atrium

    Get PDF

    A supersymmetric electroweak scale seesaw model

    Full text link
    In this paper we propose a novel supersymmetric inverse seesaw model which has only one additional Z6Z_6 symmetry. The field content is minimal to get a viable neutrino spectrum at tree-level. Interestingly, the inverse seesaw scale in our model is related to the scale of electroweak symmetry breaking. Due to that origin we are less biased about hierarchies and discuss three different types of the inverse seesaw mechanism with different phenomenologies. We can successfully reproduce neutrino masses and mixing and our model is consistent with current bounds on neutrinoless double beta decay, non-unitarity of the PMNS matrix and charged lepton flavor violation.Comment: 20 pages, 1 figure; version published in JHE

    Influence of electrode thermal conductivity on resistive switching behavior during reset process

    Get PDF
    Resistive random access memory (RRAM) is the most promising candidate for non-volatile memory (NVM) due to its extremely low operation voltage, extremely fast write/erase speed, and excellent scaling capability. However, an obstacle hindering mass production of RRAM is the non-uniform physical mechanism in its resistance switching process. This study examines the influence of different electrode thermal conductivity on switching behavior during the reset process. Electrical analysis methods and an analysis of current conduction mechanism indicate that better thermal conductivity in the electrode will require larger input power in order to induce more active oxygen ions to take part in the reset process. More active oxygen ions cause a more complete reaction during the reset process, and cause the effective switching gap (dsw) to become thicker. The effect of the electrode thermal conductivity and input power are explained by our model and clarified by electrical analysis methods. Please click Additional Files below to see the full abstract

    Preventive and therapeutic role of traditional Chinese herbal medicine in hepatocellular carcinoma

    Get PDF
    AbstractHepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide. The clinical management of HCC remains a substantial challenge. Although surgical resection of tumor tissues seems promising, a high recurrence and/or metastasis rate accounting for disease-related death has led to an urgent need for improved postsurgical preventive/therapeutic clinical intervention. Developing advanced target-therapy agents such as sorafenib appears to be the only effective clinical intervention for patients with HCC to date, but only limited trials have been conducted in this regard. Because of their enhanced preventive/therapeutic effects, traditional Chinese herbal medicine (CHM)-derived compounds are considered suitable agents for HCC treatment. The CHM-derived compounds also possess multilevel, multitarget, and coordinated intervention effects, making them ideal candidates for inhibition of tumor progression and HCC metastasis. This article reviews the anticancer activity of various CHMs with the hope of providing a better understanding of how to best use CHM for HCC treatment

    E-waste Collecting Station

    Get PDF
    We are going to develop a system to collect e-waste from individuals on every day basis.Ope

    p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes

    Get PDF
    This study reports the deposition of cuprous oxide [Cu2O] onto titanium dioxide [TiO2] nanowires [NWs] prepared on TiO2/glass templates. The average length and average diameter of these thermally oxidized and evaporated TiO2 NWs are 0.1 to 0.4 Ī¼m and 30 to 100 nm, respectively. The deposited Cu2O fills gaps between the TiO2 NWs with good step coverage to form nanoshells surrounding the TiO2 cores. The p-Cu2O/n-TiO2 NW heterostructure exhibits a rectifying behavior with a sharp turn-on at approximately 0.9 V. Furthermore, the fabricated p-Cu2O-shell/n-TiO2-nanowire-core photodiodes exhibit reasonably large photocurrent-to-dark-current contrast ratios and fast responses

    Sneutrino Dark Matter via pseudoscalar X-funnel meets Inverse Seesaw

    Full text link
    In this paper we study sneutrino dark matter in a recently proposed supersymmetric electroweak-scale inverse seesaw model, in which the majority of the sneutrino dark matter particle is a mixture of the right-handed sneutrino N~c\tilde{N}^c and the singlet field S~\tilde{S}. The scalar field XX responsible for the generation of neutrino masses can simultaneously play a crucial role for sneutrino annihilation in the early Universe via the pseudoscalar mediator AXA_X into neutrinos. We focus here on the dominant annihilation channels and provide all the formulas together with analytic estimates in order to identify the relevant parameters. Furthermore, we show that the direct detection scattering cross section is many orders of magnitude below the current limits, and estimate the indirect detection annihilation rate, which is only a few orders of magnitude below the current limits.Comment: 24 pages, 8 figures, and 2 tables. https://sarah.hepforge.org/trac/wiki/inverse-Seesaw-SUSY-EW, v2: correspond to published versio

    Tea Verification Using Triplet Loss Convolutional Network

    Get PDF
    To solve tea image classification problems, this study focuses on triplet loss convolutional neural network to classify six high-mountain oolong tea classes. In the experiment, instead of using traditional deep learning training approach for local feature of tea images, an innovative image verification approach is proposed to learn the global feature of tea images by integrating the distributed tea leavesā€™ features of all tea sub-images and using a majority voting mechanism to do classification. The results show that the proposed approach can work for small sample size dataset and have higher accuracy than normal transfer learning approach. The average accuracy of the proposed approach achieves 99.54%
    • ā€¦
    corecore