54 research outputs found

    Long non‐coding RNAs in development and disease: Conservation to mechanisms

    Get PDF
    Our genomes contain the blueprint of what makes us human and many indications as to why we develop disease. Until the last 10 years, most studies had focussed on protein‐coding genes, more specifically DNA sequences coding for proteins. However, this represents less than 5% of our genomes. The other 95% is referred to as the ‘dark matter’ of our genomes, our understanding of which is extremely limited. Part of this ‘dark matter’ includes regions that give rise to RNAs that do not code for proteins. A subset of these non‐coding RNAs are long non‐coding RNAs (lncRNAs), which in particular are beginning to be dissected and their importance to human health revealed. To improve our understanding and treatment of disease it is vital that we understand the molecular and cellular function of lncRNAs, and how their misregulation can contribute to disease. It is not yet clear what proportion of lncRNAs is actually functional; conservation during evolution is being used to understand the biological importance of lncRNA. Here, we present key themes within the field of lncRNAs, emphasising the importance of their roles in both the nucleus and the cytoplasm of cells, as well as patterns in their modes of action. We discuss their potential functions in development and disease using examples where we have the greatest understanding. Finally, we emphasise why lncRNAs can serve as biomarkers and discuss their emerging potential for therapy

    Early and midterm results of frozen elephant trunk operation with Evita open stent-graft in patients with Marfan syndrome: results of a multicentre study

    Get PDF
    Background: Endovascular treatment of patients with Marfan syndrome (MFS) is not recommended. Hybrid procedures such as frozen elephant trunk (FET), which combines stent-graft deployment with an integrated non-stented fabric graft for proximal grafting and suturing, have not been previously evaluated. The aim of this study was to assess the safety and feasibility of FET operation in patients with MFS. Methods: Patients enrolled in the International E-vita Open Registry (IEOR) who underwent FET procedure between January 2001 and February 2020 meeting Ghent criteria for MFS were included in the study. Early and midterm results were retrospectively analyzed. Preoperative, postoperative and follow-up computed tomography angiography scans were analysed. Results: We analyzed 37 patients [mean age 38 ± 11 years, 65% men]. Acute or chronic aortic dissection was present in 35 (95%) patients (14 and 21 patients respectively). Two (5%) patients had an aneurysm without dissection. Malperfusion syndrome was present in 4 patients. Twenty-nine (78%) patients had history of aortic surgical interventions. The 30-day and in-hospital mortality amounted to 8 and 14% respectively. False lumen exclusion was present in 73% in stented segment in last postoperative CT. The overall 5-year survival was 71% and freedom from reintervention downstream was 58% at 5 years. Of the nine patients who required reintervention for distal aortic disease, one patient died. Conclusions: FET operation for patients with MFS can be performed with acceptable mortality and morbidity. In long-term follow-up no reinterventions on the aortic arch were required. FET allows for easier second stage operations providing platform for surgical and endovascular reinterventions

    C9orf72 Expansion Disrupts ATM-mediated Chromosomal Break Repair

    Get PDF
    A hexanucleotide repeat expansion represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which the expansion cause neurodegeneration are poorly understood. We report elevated levels of DNA/RNA hybrids (R-loops) and double-strand breaks (DSBs) in rodent neurons, human cells, and in C9orf72-ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signalling and accumulation of protein-linked DNA breaks. We further reveal that defective ATM-mediated DNA repair is a consequence of p62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signalling. Adeno-associated virus- mediated expression of C9orf72-related RNA and dipeptide repeats in the murine central nervous system causes elevated DSBs, ATM defects, and triggers neurodegeneration. These findings identify R-Loops, DSBs, and defective ATM-mediated repair as pathological consequences of C9orf72 expansions, and suggest that C9orf72-linked neurodegeneration is driven, at least in part, by genomic instability
    • 

    corecore