119 research outputs found
Gold fragmentation induced by stopped antiprotons
A natural gold target was irradiated with the antiproton beam from the Low
Energy Antiproton Ring at CERN. Antiprotons of 200 MeV/c momentum were stopped
in a thick target, products of their annihilations on Au nuclei were detected
using the off-line gamma-ray spectroscopy method. In total, yields for 114
residual nuclei were determined, providing a data set to deduce the complete
mass and charge distribution of all products with A > 20 from a fitting
procedure. The contribution of evaporation and fission decay modes to the total
reaction cross section as well as the mean mass loss were estimated. The
fission probability for Au absorbing antiprotons at rest was determined to be
equal to (3.8+-0.5)%, in good agreement with an estimation derived using other
techniques. The mass-charge yield distribution was compared with the results
obtained for proton and pion induced gold fragmentation. On the average, the
energy released in pbar annihilation is similar to that introduced by ~ 1 GeV
protons. However, compared to proton bombardment products, the yield
distribution of antiproton absorption residues in the N-Z plane is clearly
distinct. The data for antiprotons exhibit also a substantial influence of
odd-even and shell effects.Comment: 14 pages, 9 figures, Revtex 4, to be published in Physical Review
Composition of the nuclear periphery from antiproton absorption
Thirteen targets with mass numbers from 58 to 238 were irradiated with the
antiproton beam from the Low Energy Antiproton Ring facility at CERN leading to
the formation of antiprotonic atoms of these heavy elements. The antiproton
capture at the end of an atomic cascade results in the production of more or
less excited residual nuclei. The targets were selected with the criterion that
both reaction products with one nucleon less than the proton and neutron number
of the target be radioactive. The yield of these radioactive products after
stopped-antiproton annihilation was determined using gamma-ray spectroscopy
techniques. This yield is related to the proton and neutron density in the
target nucleus at a radial distance corresponding to the antiproton
annihilation site. The experimental data clearly indicate the existence of a
neutron-rich nuclear periphery, a "neutron halo", strongly correlated with the
target neutron separation energy Bn and observed for targets with Bn < 10 MeV.
For two-target nuclei 106Cd and 144Sm, with larger neutron binding energies, a
proton-rich nuclear periphery was observed. Most of the experimental data are
in reasonable agreement with calculations based on current antiproton-nucleus
and pion-nucleus interaction potentials and on nuclear densities deduced with
the help of the Hartree-Fock-Bogoliubov approach. This approach was, however,
unable to account for the 106Cd and 144Sm results.Comment: Latex (RevTeX,aps style), 13 pages + 12 Postscript figure
A clear signature of the breakup modes for 9Be on a proton target at 5.6 MeV/nucleon
The breakup of 9Be is studied via an inelastic scattering experiment on a proton
target at 5.6 A MeV in inverse kinematics. Two of the three cluster constituents (α and α)
as well as the proton target recoil were recorded in a triple coincidence mode allowing a full
kinematics approach analysis. In this respect relative α - α and α - n, Q-value and 9Be excitation
spectra, energy spectra for all fragments as well as the energy spectrum of the recoil proton
were reconstructed. A clear signature of the two breakup sequential modes (5He + 4He and
8Be + n) was identified via the recoiling proton reconstructed spectra together with the direct
breakup decay. A strong 5He + 4He mode was observed compatible with previous beta decay
experiments
Information on antiprotonic atoms and the nuclear periphery from the PS209 experiment
In the PS209 experiments at CERN two kinds of measurements were performed:
the in-beam measurement of X-rays from antiprotonic atoms and the
radiochemical, off-line determination of the yield of annihilation products
with mass number A_t -1 (less by 1 than the target mass). Both methods give
observables which allows to study the peripheral matter density composition and
distribution.Comment: LaTeX (espcrc1 style), 6 pages, 3 EPS figures, 1 table, Proceedings
of the Sixth Biennal Conference on Low-Energy Antiproton Physics LEAP 2000,
Venice, Ital
Neutron density distributions from antiprotonic 208Pb and 209Bi atoms
The X-ray cascade from antiprotonic atoms was studied for 208Pb and 209Bi.
Widths and shifts of the levels due to the strong interaction were determined.
Using modern antiproton-nucleus optical potentials the neutron densities in the
nuclear periphery were deduced. Assuming two parameter Fermi distributions
(2pF) describing the proton and neutron densities the neutron rms radii were
deduced for both nuclei. The difference of neutron and proton rms radii /\r_np
equal to 0.16 +-(0.02)_{stat} +- (0.04)_{syst} fm for 208Pb and 0.14 +-
(0.04)_{stat} +- (0.04)_{syst} fm for 209Bi were determined and the assigned
systematic errors are discussed. The /\r_np values and the deduced shapes of
the neutron distributions are compared with mean field model calculations.Comment: 22 pages, 8 tables, 15 figure
Deuteron Photodissociation in Ultraperipheral Relativistic Heavy-Ion on Deuteron Collisions
In ultraperipheral relativistic deuteron on heavy-ion collisions, a photon
emitted from the heavy nucleus may dissociate the deuterium ion. We find
deuterium breakup cross sections of 1.38 barns for deuterium-gold collisions at
a center of mass energy of 200 GeV per nucleon, as studied at the Relativistic
Heavy Ion Collider, and 2.49 barns for deuterium-lead collisions at a center of
mass energy of 6.2 TeV, as proposed for the Large Hadron Collider. This cross
section includes an energy-independent 140 mb contribution from hadronic
diffractive dissociation. At the LHC, the cross section is as large as that of
hadronic interactions. The estimated error is 5%. Deuteron dissociation could
be used as a luminosity monitor and a `tag' for moderate impact parameter
collisions.Comment: Final version, to appear in Phys. Rev. C. Diffractive dissociation
included 10 pages with 3 figure
Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains
In light of new data on neutron distributions from experiments with
antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501
(2001)], we reexamine the role of nuclear-structure uncertainties in the
interpretation of measurements of parity violation in atoms using chains of
isotopes of the same element. With these new nuclear data, we find an
improvement in the sensitivity of isotopic chain measurements to ``new
physics'' beyond the standard model. We compare possible constraints on ``new
physics'' with the most accurate to date single-isotope probe of parity
violation in the Cs atom. We conclude that presently isotopic chain experiments
employing atoms with nuclear charges Z < 50 may result in more accurate tests
of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.
Optimization of relativistic mean field model for finite nuclei to neutron star matter
We have optimized the parameters of extended relativistic mean-field model
using a selected set of global observables which includes binding energies and
charge radii for nuclei along several isotopic and isotonic chains and the
iso-scalar giant monopole resonance energies for the Zr and Pb
nuclei. The model parameters are further constrained by the available
informations on the energy per neutron for the dilute neutron matter and bounds
on the equations of state of the symmetric and asymmetric nuclear matter at
supra-nuclear densities. Two new parameter sets BSP and IUFSU* are obtained,
later one being the variant of recently proposed IUFSU parameter set. The BSP
parametrization uses the contributions from the quartic order cross-coupling
between and mesons to model the high density behaviour of the
equation of state instead of the meson self-coupling as in the case of
IUFSU* or IUFSU. Our parameter sets yield appreciable improvements in the
binding energy systematics and the equation of state for the dilute neutron
matter. The importance of the quartic order cross coupling term
of the extended RMF model, as often ignored, is realized.Comment: 22 pages, 11 figures, Nucl. Phys. A (in press
Correlated many-body treatment of Breit interaction with application to cesium atomic properties and parity violation
Corrections from Breit interaction to basic properties of atomic 133Cs are
determined in the framework of third-order relativistic many-body perturbation
theory. The corrections to energies, hyperfine-structure constants,
off-diagonal hyperfine 6S-7S amplitude, and electric-dipole matrix elements are
tabulated. It is demonstrated that the Breit corrections to correlations are
comparable to the Breit corrections at the Dirac-Hartree-Fock level.
Modification of the parity-nonconserving (PNC) 6S-7S amplitude due to Breit
interaction is also evaluated; the resulting weak charge of Cs shows no
significant deviation from the prediction of the standard model of elementary
particles. The neutron skin correction to the PNC amplitude is also estimated
to be -0.2% with an error bound of 30% based on the analysis of recent
experiments with antiprotonic atoms. The present work supplements publication
[A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)] with a discussion of the
formalism and provides additional numerical results and updated discussion of
parity violation.Comment: 16 pages; 5 figs; submitted to Phys. Rev.
- âŠ