90 research outputs found

    Coinfection with Different Trypanosoma cruzi Strains Interferes with the Host Immune Response to Infection

    Get PDF
    A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice

    IL-17 Produced during Trypanosoma cruzi Infection Plays a Central Role in Regulating Parasite-Induced Myocarditis

    Get PDF
    Chagas disease is caused by the intracellular parasite Trypanosoma cruzi. This infection has been considered one of the most neglected diseases and affects several million people in the Central and South America. Around 30% of the infected patients develop digestive and cardiac forms of the disease. Most patients are diagnosed during the chronic phase, when the treatment is not effective. Here, we showed by the first time that IL-17 is produced during experimental T. cruzi infection and that it plays a significant role in host defense, modulating parasite-induced myocarditis. Applying this analysis to humans could be of great value in unraveling the elements involved in the pathogenesis of chagasic cardiopathy and could be used in the development of alternative therapies to reduce morbidity during the chronic phase of the disease, as well as clinical markers of disease progression. The understanding of these aspects of disease may be helpful in reducing the disability-adjusted life years (DALYs) and costs to the public health service in developing countries

    Maternal Infection with Trypanosoma cruzi and Congenital Chagas Disease Induce a Trend to a Type 1 Polarization of Infant Immune Responses to Vaccines

    Get PDF
    Vaccines are of crucial importance to prevent morbidity and mortality due to infectious diseases in childhood. A modulation of the fetal/neonatal immune system (considered immature) toward Th1 or Th2 dominance could modify responses to vaccines administered in early life. T. cruzi is the agent of Chagas' disease, in Latin America currently infecting about 2 million women at fertile ages who are susceptible to transmitting the parasite to their fetus. In previous studies we showed that T. cruzi-infected mothers can induce a pro-inflammatory environment in their uninfected neonates (M+B−), whereas congenitally infected newborns (M+B+) are able to develop a pro-Th1 parasite-specific T cell response. In the present study, we analysed the cellular and/or antibody responses to Bacillus Calmette Guerin (BCG), hepatitis B birus (HBV), diphtheria and tetanus vaccines in 6- to 7-month-old infants living in Bolivia. M+B− infants produced more IFN-γ in response to BCG, whereas M+B+ infants developed a stronger IFN-γ response to hepatitis B, diphtheria and tetanus vaccines and enhanced antibody production to HBs antigen. These results show that both maternal infection with T. cruzi and congenital Chagas disease do not interfere with responses to BCG, hepatitis B, diphtheria and tetanus vaccines in the neonatal period and that T. cruzi infection in early life tends to favour type 1 immune responses to vaccinal antigens

    Interleukin-6 (IL-6) production in mice infected with Trypanosoma cruzi: effect of its paradoxical increase by anti-IL-6 monoclonal antibody treatment on infection and acute-phase and humoral immune responses.

    No full text
    Trypanosoma cruzi infection of mice triggered endogenous production of interleukin-6 (IL-6) during the ascending phase of parasitemia. Injections of anti-IL-6 monoclonal antibody in infected mice at the time of the serum IL-6 peak paradoxically increased IL-6 levels to 60- to 80-fold those in infected mice receiving unrelated immunoglobulins. This early and transient increase in circulating IL-6 levels modified neither the immunoglobulin nor T. cruzi-specific antibody levels of immunoglobulin G1 (IgG1), IgG2a, IgG3, IgM, IgA, and IgE isotypes or the final outcome of infection nor the blood or tissular parasite levels. However, it tended to delay mortality of mice and to increase the levels of the acute-phase protein serum amyloid P component
    • …
    corecore