83 research outputs found

    Adding Value to JWST Spectra and Photometry: Stellar Population and Star Formation Properties of Spectroscopically Confirmed JADES and CEERS Galaxies at z>7z > 7

    Full text link
    In this paper, we discuss measurements of the stellar population and star forming properties for 43 spectroscopically confirmed publicly available high-redshift z>7z > 7 JWST galaxies in the JADES and CEERS observational programs. We carry out a thorough study investigating the relationship between spectroscopic features and photometrically derived ones, including from spectral energy distribution (SED) fitting of models, as well as morphological and structural properties. We find that the star formation rates (SFRs) measured from Hβ\beta line emission are higher than those estimated from Bayesian SED fitting and UV luminosity, with ratios SFRHβ_{H\beta}/ SFRUV_{UV} ranging from 2~13. This is a sign that the star formation history is consistently rising given the timescales of Hβ\beta vs UV star formation probes. In addition, we investigate how well equivalent widths (EWs) of Hβ\beta λ\lambda4861, [O III] λ\lambda4959, and [O III] λ\lambda5007 can be measured from photometry, finding that on average the EW derived from photometric excesses in filters is 30% smaller than the direct spectroscopic measurement. We also discover that a stack of the line emitting galaxies shows a distinct morphology after subtracting imaging that contains only the continuum. This gives us a first view of the line or ionized gas emission from z>7z > 7 galaxies, demonstrating that this material has a similar distribution, statistically, as the continuum. We also compare the derived SFRs and stellar masses for both parametric and non-parametric star formation histories, where we find that 35% of our sample formed at least 30% of their stellar mass in recent (< 10 Myr) starburst events.Comment: 17 Pages, 13 Figures, 4 Tables, submitted to MNRA

    EPOCHS VI: The Size and Shape Evolution of Galaxies since z ~ 8 with JWST Observations

    Full text link
    We present the results of a size and structural analysis of 1395 galaxies at 0.5z80.5 \leq z \lesssim 8 with stellar masses log(M/M)\log \left(M_* / M_{\odot}\right) >> 9.5 within the JWST Public CEERS field that overlaps with the HST CANDELS EGS observations. We use GALFIT to fit single S\'ersic models to the rest-frame optical profile of our galaxies, which is a mass-selected sample complete to our redshift and mass limit. Our primary result is that at fixed rest-frame wavelength and stellar mass, galaxies get progressively smaller, evolving as (1+z)0.71±0.19\sim (1+z)^{-0.71\pm0.19} up to z8z \sim 8. We discover that the vast majority of massive galaxies at high redshifts have low S\'ersic indices, thus do not contain steep, concentrated light profiles. Additionally, we explore the evolution of the size-stellar mass relationship, finding a correlation such that more massive systems are larger up to z3z \sim 3. This relationship breaks down at z>3z > 3, where we find that galaxies are of similar sizes, regardless of their star formation rates and S\'ersic index, varying little with mass. We show that galaxies are more compact at redder wavelengths, independent of sSFR or stellar mass up to z3z \sim 3. We demonstrate the size evolution of galaxies continues up to z8z \sim 8, showing that the process or causes for this evolution is active at early times. We discuss these results in terms of ideas behind galaxy formation and evolution at early epochs, such as their importance in tracing processes driving size evolution, including minor mergers and AGN activity.Comment: Submitted to MNRA

    EPOCHS VIII. An Insight into MIRI-selected Galaxies in SMACS-0723 and the Benefits of Deep MIRI Photometry in Revealing AGN and the Dusty Universe

    Full text link
    We present the analysis of the stellar population and star formation history of 181 MIRI selected galaxies at redshift 0-3.5 in the massive galaxy cluster field SMACS J0723.3-7327, commonly referred to as SMACS0723, using the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI). We combine the data with the JWST Near Infrared Camera (NIRCam) catalogue, in conjunction with the Hubble Space Telescope (HST) WFC3/IR and ACS imaging. We find that the MIRI bands capture PAH features and dust emission, significantly enhancing the accuracy of photometric redshift and measurements of the physical properties of these galaxies. The median photo-z's of galaxies with MIRI data are found to have a small 0.1% difference from spectroscopic redshifts and reducing the error by 20 percent. With MIRI data included in SED fits, we find that the measured stellar masses are unchanged, while the star formation rate is systematically lower by 0.1 dex. We also fit the median SED of active galactic nuclei (AGN) and star forming galaxies (SFG) separately. MIRI data provides tighter constraints on the AGN contribution, reducing the typical AGN contributions by ~14 percent. In addition, we also compare the median SED obtained with and without MIRI, and we find that including MIRI data yields steeper optical and UV slopes, indicating bluer colours, lower dust attenuation, and younger stellar populations. In the future, MIRI/MRS will enhance our understanding by providing more detailed spectral information and allowing for the study of specific emission features and diagnostics associated with AGN.Comment: 15 pages, 14 figures and 1 table, submitted to MNRA

    Seeing sharper and deeper: JWST's first glimpse of the photometric and spectroscopic properties of galaxies in the epoch of reionisation

    Full text link
    We analyse the photometric and spectroscopic properties of four galaxies in the epoch of reionisation (EoR) within the SMACS 0723 JWST Early Release Observations field. Given the known spectroscopic redshifts of these sources, we investigated the accuracy with which photometric redshifts can be derived using NIRCam photometry alone, finding that F115W imaging is essential to distinguish between z~8 galaxies with high equivalent width (EW) [O III] {\lambda}5007 emission and z~10 Balmer break galaxies. We find that all four sources exhibit strong (> 0.6 mag) F356W-F444W colours, which sit at the extreme end of theoretical predictions from numerical simulations. We find that these galaxies deviate (by roughly 0.5 dex) from the local correlation between [O III] {\lambda}5007/H\beta and [Ne III] {\lambda}3869/[O II], which is consistent with the predictions from simulations of high-redshift galaxies. We measure the [O III] {\lambda}5007 rest-frame equivalent widths both directly from the spectroscopy, and indirectly as inferred from the strong F356W-F444W colours, finding large [O III] {\lambda}5007 EWs of 400-1000 {\AA}. The [O III] {\lambda}5007 and H\beta EWs are consistent with those seen in extreme, intensely star-forming dwarf galaxies in the local Universe. Our structural analysis indicates that these galaxies are resolved, exhibiting irregular shapes with bright clumps and colour gradients. In line with the predictions from the FLARES hydrodynamic simulations, such intense star formation and extreme nebular conditions are likely the norm, rather than the exception, in the EoR. Finally, although star-forming galaxies and AGN often occupy similar regions within the [O III] {\lambda}5007/H\beta-[O II]/H{\delta} plane, we find that AGN exhibit distinct, red colours in the F150W-F200W, F200W-F277W plane.Comment: 14 pages, 8 figure

    First Light And Reionisation Epoch Simulations (FLARES) XI: [OIII] emitting galaxies at 5<z<105<z<10

    Full text link
    JWST has now made it possible to probe the rest-frame optical line emission of high-redshift galaxies extending to z~9, and potentially beyond. To aid in the interpretation of these emerging constraints, in this work we explore predictions for [OIII] emission in high-redshift galaxies using the First Light and Reionisation Epoch Simulations (FLARES). We produce predictions for the [OIII] luminosity function, its correlation with the UV luminosity, and the distribution of equivalent widths (EWs). We also explore how the [OIII] EW correlates with physical properties including specific star formation rate, metallicity, and dust attenuation. Our predictions are largely consistent with recent observational constraints on the luminosity function, average equivalent widths, and line ratios. However, they fail to reproduce the observed tail of high-EW sources and the number density of extreme line emitters. Possibilities to explain these discrepancies include an additional source of ionising photons and/or greater stochasticity in star formation in the model or photometric scatter and/or bias in the observations. With JWST now rapidly building larger samples and a wider range of emission lines the answer to this remaining discrepancy should be available imminently.Comment: 15 pages, accepted for publication in MNRAS, minor changes from original versio

    The JWST Hubble Sequence: The Rest-frame Optical Evolution of Galaxy Structure at 1.5 < z < 6.5

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We present results on the morphological and structural evolution of a total of 3956 galaxies observed with JWST at 1.5 109 M ⊙ at z > 3 are not dominated by irregular and peculiar structures, either visually or quantitatively, as previously thought. We find a strong dominance of morphologically selected disk galaxies up to z = 6 in this mass range. We also find that the stellar mass and star formation rate densities are dominated by disk galaxies up to z ∼ 6, demonstrating that most stars in the Universe were likely formed in a disk galaxy. We compare our results to theory to show that the fraction of types we find is predicted by cosmological simulations, and that the Hubble Sequence was already in place as early as one billion years after the Big Bang. Additionally, we make our visual classifications public for the community.Peer reviewe

    EPOCHS VI: The Size and Shape Evolution of Galaxies since z ∼ 8 with JWST Observations

    Get PDF
    We present the results of a size and structural analysis of 1395 galaxies at 0.5 ≤ z ≲ 8 with stellar masses log (M*/M⊙> 9.5 within the JWST Public CEERS field that overlaps with the HST CANDELS EGS observations. We use GALFIT to fit single Sérsic models to the rest-frame optical profile of our galaxies, which is a mass-selected sample complete to our redshift and mass limit. Our primary result is that at fixed rest-frame wavelength and stellar mass, galaxies get progressively smaller, evolving as ∼(1 + z)−0.71 ± 0.19 up to z ∼ 8. We discover that the vast majority of massive galaxies at high redshifts have low Sérsic indices, thus do not contain steep, concentrated light profiles. Additionally, we explore the evolution of the size-stellar mass relationship, finding a correlation such that more massive systems are larger up to z ∼ 3. This relationship breaks down at z > 3, where we find that galaxies are of similar sizes, regardless of their star formation rates and Sérsic index, varying little with mass. We show that galaxies are more compact at redder wavelengths, independent of sSFR or stellar mass up to z ∼ 3. We demonstrate the size evolution of galaxies continues up to z ∼ 8, showing that the process or causes for this evolution is active at early times. We discuss these results in terms of ideas behind galaxy formation and evolution at early epochs, such as their importance in tracing processes driving size evolution, including minor mergers and AGN activity
    corecore