13 research outputs found

    Nuclear morphology predicts cell survival to cisplatin chemotherapy

    No full text
    The emergence of chemotherapy resistance drives cancer lethality in cancer patients, with treatment initially reducing overall tumor burden followed by resistant recurrent disease. While molecular mechanisms underlying resistance phenotypes have been explored, less is known about the cell biological characteristics of cancer cells that survive to eventually seed the recurrence. To identify the unique phenotypic characteristics associated with survival upon chemotherapy exposure, we characterized nuclear morphology and function as prostate cancer cells recovered following cisplatin treatment. Cells that survived in the days and weeks after treatment and resisted therapy-induced cell death showed increasing cell size and nuclear size, enabled by continuous endocycling resulting in repeated whole genome doubling. We further found that cells that survive after therapy release were predominantly mononucleated and likely employ more efficient DNA damage repair. Finally, we show that surviving cancer cells exhibit a distinct nucleolar phenotype and increased rRNA levels. These data support a paradigm where soon after therapy release, the treated population mostly contains cells with a high level of widespread and catastrophic DNA damage that leads to apoptosis, while the minority of cells that have successful DDR are more likely to access a pro-survival state. These findings are consistent with accession of the polyaneuploid cancer cell (PACC) state, a recently described mechanism of therapy resistance and tumor recurrence. Our findings demonstrate the fate of cancer cells following cisplatin treatment and define key cell phenotypic characteristics of the PACC state. This work is essential for understanding and, ultimately, targeting cancer resistance and recurrence

    Vitamin D inhibited TNFα-induced cytokine expression.

    No full text
    <p>Although the amount of inhibition differed by cytokine, vitamin D inhibited three cytokine levels to a comparable degree in fatal asthma-derived vs. non-asthma-derived ASM, even for IL8, whose TNFα-induced baseline secretion was significantly higher in fatal asthma- vs. non-asthma-derived ASM. Data represent means ± standard error of the mean for ASM cells derived from 5 fatal asthma donors and 10 non-asthma donors. Each condition was measured in triplicate. Statistical significance was determined using Student’s two-tailed <i>t</i>-test with a p<0.05 threshold. Bottom panels compare baseline TNFα-induced cytokine levels to those obtained with a maximal inhibitory vitamin D concentration (I<sub>max</sub>).</p

    TNFα-induced cytokine levels in ASM.

    No full text
    <p>Cytokine levels in supernatant obtained from ASM derived from fatal asthma and non-asthma donors were determined by single ELISA. The data represent means ± standard error from ASM cells of 3 fatal asthma and 3 non-asthma donors for CCL2 and CXCL12; 5 fatal asthma and 6 non-asthma donors for CCL13; and 5 fatal asthma and 5 non-asthma donors for IL8 (numbers based on availability of cells used after RNA-Seq experiments). Each observation was performed in triplicate. Statistical significance was determined by Student’s one-tailed <i>t</i>-test with significance determined at p<0.05.</p

    Differential expression results for all comparison groups corresponding to four cytokine genes that were selected for further study.

    No full text
    <p>Genes were selected based on being (1) members of the <i>GO</i>:<i>0008009~chemokine activity</i> ontological category, which was significantly over-represented among genes differentially expressed in response to vitamin D treatment in both fatal asthma- and non-asthma-derived ASM, that were (2) differentially expressed in fatal asthma-derived vs. non-asthma-derived ASM at baseline. FPKM = fragments per kilobase of transcript per million mapped reads.</p
    corecore