4 research outputs found

    Ubiquitin activation is essential for schizont maturation in Plasmodium falciparum blood-stage development

    Get PDF
    Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites

    Einblick in die duale SpezifitÀt von UBA6

    No full text
    Ubiquitylation is a protein post translational modification, in which ubiquitin is covalently attached to target protein substrates resulting in diverse cellular outcomes. Besides ubiquitin, various ubiquitin-like proteins including FAT10 exist, which are also conjugated to target proteins. The underlying modification mechanisms are conserved. In the initial step, ubiquitin or a ubiquitin-like protein is thioester-linked to a catalytic cysteine in the E1activating enzyme in an ATP-dependent manner. The respective protein modifier is then transferred to an E2 conjugating enzyme in a transthioesterification reaction. Finally, an E3 ubiquitin ligase E3 catalyzes the covalent attachment of the protein modifier to a substrate. In the case of ubiquitin, multiple ubiquitin molecules can be attached to a substrate in the form of either linear or branched polyubiquitin chains but also as single ubiquitin modifications. Depending on the nature of the ubiquitin chain, the substrates are destined to various cellular processes such as their targeted destruction by the proteasome but also non-degradative outcomes may occur. As stated above FAT10 is a ubiquitin-like protein modifier which typically targets proteins for proteasomal degradation. It consists of two ubiquitin-like domains and is mainly expressed in cells of the human immune system. The reported involvement of FAT10 modifications in cancers and other diseases has caught the attention of the scientific community as an inhibition of the FAT10ylation process may provide avenues for novel therapeutic approaches. UBA6 is the E1 activating enzyme that resides at the apex of the FAT10 proteasomal degradation pathway. UBA6 not only recognizes FAT10 but can also activate ubiquitin as efficiently as the ubiquitin specific E1 UBA1. The dual specificity of UBA6 may complicate the inhibition FAT10ylation since targeting the active site of UBA6 will also inhibit the UBA6-catalyzed ubiquitin activation. Therefore, it is important to understand the underlying principles for the dual specificity of UBA6 prior to the development of compounds interfering with FAT10ylation. In this thesis important novel insights into the structure and function of UBA6 were derived by X-ray crystallography and biochemical methods. The first crystal structure of UBA6 reveals the multidomain architecture of this enzyme in atomic detail. The enzyme is composed of a rigid core including its active and inactive adenylation domains as well as a 4 helix bundle. Overall, the molecule adopts a “Y” shape architecture with the core at the base and the first and second catalytic half domains forming one arm of the “Y” and the ubiquitin fold domain constituting the other arm. While UBA6 shares the same domain architecture as UBA1, substantial differences were revealed by the crystal structure. In particular, the first catalytic half domain undergoes a significant shift to a position more distal from the core. This rigid body movement is assumed to generate room to accommodate the second ubiquitin-like domain of FAT10. Differences are also observed in a hydrophobic platform between the core and the first catalytic half domain and the adenylation active site in the core, which together from the binding sites for ubiquitin and FAT10. Site directed mutagenesis of key residues in these areas altered the UBA6-catalyzed activation of ubiquitin and FAT10. UBA6 variants were generated with the goal of trying to block the activation of FAT10 while still maintaining that of ubiquitin activation, in order to fully explain the dual specificity of UBA6. However, none of these mutations could block the activation of FAT10, while some of these UBA6 variants blocked ubiquitin activation. Preliminary inhibition assays with a group of E1 inhibitors belonging to the adenosyl sulfamate family demonstrated potent inhibition of FAT10ylation for two compounds. The dual specificity of UBA6 hence needs to be further examined by biochemical and structural methods. In particular, the structure of a complex between UBA6 and ubiquitin or FAT10 would provide key insights for further biochemical studies, ultimately allowing the targeted inhibition of the FAT10ylation machinery.Der Prozess der Ubiquitinierung stellt eine posttranslationale Modifikation dar, bei der das kleine Protein Ubiquitin kovalent an ein Zielprotein angehĂ€ngt wird, was zu verschiedenen zellulĂ€ren Effekten fĂŒhrt. Neben Ubiquitin existieren verschiedene ubiquitinĂ€hnliche Proteine, wie z.B. FAT10, die an Zielproteine angehĂ€ngt werden können. Die der Modifikation zugrunde liegenenden Mechanismen der Proteinmodifikation sind konserviert. Im ersten Schritt wird Ubiquitin oder das ubiquitinĂ€hnliche Protein in einer ATP-abhĂ€ngigen Reaktion kovalent an das katalytische Cystein des aktivierenden Enzyms (E1) gebunden. Danach wird es durch Transthioestherifizierung an ein konjugierendes Enzym (E2) ĂŒbertagen und schließlich durch eine Ligase (E3) kovalent an das Substrat gehĂ€ngt. Ubiquitin kann entweder einzeln oder in Form linearer oder verzweigter Ketten an ein Substrat angehĂ€ngt werden, was wiederum zu verschiedenen funktionalen Konsequenzen wie dem Abbau das Proteins durch das Proteasom fĂŒhren kann. Wie schon erwĂ€hnt ist FAT10 ein ubiquitinĂ€hliches Protein, das ĂŒblicherweise Zielproteine fĂŒr den Abbau durch das Proteasom markiert. Es besteht aus zwei ubiquitinĂ€hnlichen DomĂ€nen und wird im Menschen hauptsĂ€chlich in Zellen des Immunsystems exprimiert. Die Beteiligung von FAT10 an der Entstehung von Krebs and anderen Krankheiten hat die Aufmerksamkeit der wissenschaftlichen Gemeinschaft erregt, da Inhibition des ‚FAT10ylation‘ Prozesses einen neuen therapeutischen Ansatz zur Behandlung dieser Krankheiten darstellen könnte. UBA6 fungiert hierbei als E1 s Enzym, das am Anfang des FAT10-abhĂ€ngigen proteasomalen Abbaus steht. UBA6 aktiviert neben FAT10 auch Ubiquitin mit Ă€hnlicher Effizienz wie das ubiquitinspezifische E1 UBA1. Diese BispezifitĂ€t von UBA6 könnte die Inhibition der FAT10ylierung erschweren, da die Inhibition der katalytischen UBA6 AktivitĂ€t gleichzeitig UBA6-abhĂ€ngige Ubiquitinaktivierung behindern wĂŒrde. Daher ist fĂŒr die zukĂŒnfitge Entwicklung FAT10-spezifischer UBA6 Inhibitoren ein grundlegendes VerstĂ€ndnis der UBA6 BispezifitĂ€t unerlĂ€sslich. In dieser Dissertation wurden wichtige, neue Einsichten in die Struktur und Funktion von UBA6 durch Röntgenkristallographie und biochemische Methoden gewonnen. Die erste Kristallstruktur von UBA6 zeigt die MultidomĂ€nenarchitektur des Enzyms bei atomarer Auflösung. Das Protein besteht aus einem starren Kern, der sowohl seine aktive als auch inaktive AdenylierungsdomĂ€ne sowie ein 4-Helix BĂŒndel enthĂ€lt. Das MolekĂŒl nimmt eine an ein Y erinnnernde Form ein, in der der Kern die Basis, die erste und zweite katalytischen HalbdomĂ€nen einen Arm und die ubiquitinĂ€hnliche gefaltete DomĂ€ne den zweiten Arm darstellen. Zwar Ă€hneln sich der DomĂ€nenaufbau von UBA6 und UBA1, jedoch zeigte die Kristallstruktur bedeutende Unterschiede zwischen den beiden auf. Speziell die erste katalytische HalbdomĂ€ne ist in UBA6 im Vergleich zu UBA1weiter vom Enzymkern entfernt. Diese ‚Bewegung‘ erlaubt wahrscheinlich die Platzierung der zweiten UBL-DomĂ€ne von FAT10. Weitere Unterschiede konnten auch in der hydrophoben OberflĂ€che zwischen Kern, erster katalytischer HalbdomĂ€ne und dem aktiven Zentrum fĂŒr die Adenylierung im Kern beobachtet werden, die zusammen die Bindestelle fĂŒr Ubiquitin und FAT10 bilden. Durch ortsgerichtete Mutagenese von SchlĂŒsselpositionen in dieser Region kontte die UBA6-katalysierte Aktivierung von entweder Ubiquitin oder FAT10 unterbunden werden. Um die BispezifitĂ€t von UBA6 zu entschlĂŒsseln wurden UBA6 Varianten mit dem Ziel erzeugt, die Aktivierung von FAT10 unter Aufrechterhaltung der von Ubiquitin zu blockieren. Obwohl keine dieser Mutationen die FAT10-Aktivierung unterband, verhinderten einige jedoch die Aktivierung von Ubiquitin. VorlĂ€ufige Inhibitionsexperimente mit E1-Inhibitoren aus der Adenosylsulfamat Klasse zeigten starke Inhibition der FAT10ylierung durch zwei Verbindungen. Die BispezifitĂ€t von UBA6 bedarf weiterer strukturbiologischer und biochemischer Untersuchungen. Vor allem Kristallstrukturen von UBA6 in FAT10 und Ubiquitin-gebundener Form wĂŒrden wichtige Erkenntnisse fĂŒr weiteregehende biochemische Untersuchungen und schließlich die gezielte UnterdrĂŒckung der FAT10ylierungsmaschinerie liefern

    Structures of UBA6 explain its dual specificity for ubiquitin and FAT10

    No full text
    The covalent modification of target proteins with ubiquitin or ubiquitin-like modifiers is initiated by E1 activating enzymes, which typically transfer a single modifier onto cognate conjugating enzymes. UBA6 is an unusual E1 since it activates two highly distinct modifiers, ubiquitin and FAT10. Here, we report crystal structures of UBA6 in complex with either ATP or FAT10. In the UBA6-FAT10 complex, the C-terminal domain of FAT10 binds to where ubiquitin resides in the UBA1-ubiquitin complex, however, a switch element ensures the alternate recruitment of either modifier. Simultaneously, the N-terminal domain of FAT10 interacts with the 3-helix bundle of UBA6. Site-directed mutagenesis identifies residues permitting the selective activation of either ubiquitin or FAT10. These results pave the way for studies investigating the activation of either modifier by UBA6 in physiological and pathophysiological settings

    Flexibility and Stability Trade-Off in Active Site of Cold-Adapted <i>Pseudomonas mandelii</i> Esterase EstK

    No full text
    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from <i>Pseudomonas mandelii</i>. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility–stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes
    corecore