5,431 research outputs found

    Posterior Matching Scheme for Gaussian Multiple Access Channel with Feedback

    Full text link
    Posterior matching is a method proposed by Ofer Shayevitz and Meir Feder to design capacity achieving coding schemes for general point-to-point memoryless channels with feedback. In this paper, we present a way to extend posterior matching based encoding and variable rate decoding ideas for the Gaussian MAC with feedback, referred to as time-varying posterior matching scheme, analyze the achievable rate region and error probabilities of the extended encoding-decoding scheme. The time-varying posterior matching scheme is a generalization of the Shayevitz and Feder's posterior matching scheme when the posterior distributions of the input messages given output are not fixed over transmission time slots. It turns out that the well-known Ozarow's encoding scheme, which obtains the capacity of two-user Gaussian channel, is a special case of our extended posterior matching framework as the Schalkwijk-Kailath's scheme is a special case of the point-to-point posterior matching mentioned above. Furthermore, our designed posterior matching also obtains the linear-feedback sum-capacity for the symmetric multiuser Gaussian MAC. Besides, the encoding scheme in this paper is designed for the real Gaussian MAC to obtain that performance, which is different from previous approaches where encoding schemes are designed for the complex Gaussian MAC. More importantly, this paper shows potential of posterior matching in designing optimal coding schemes for multiuser channels with feedback.Comment: submitted to the IEEE Transactions on Information Theory. A shorter version has been accepted to IEEE Information Theory Workshop 201

    PC graphics generation and management tool for real-time applications

    Get PDF
    A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications

    On the Capacity of Symmetric Gaussian Interference Channels with Feedback

    Full text link
    In this paper, we propose a new coding scheme for symmetric Gaussian interference channels with feedback based on the ideas of time-varying coding schemes. The proposed scheme improves the Suh-Tse and Kramer inner bounds of the channel capacity for the cases of weak and not very strong interference. This improvement is more significant when the signal-to-noise ratio (SNR) is not very high. It is shown theoretically and numerically that our coding scheme can outperform the Kramer code. In addition, the generalized degrees-of-freedom of our proposed coding scheme is equal to the Suh-Tse scheme in the strong interference case. The numerical results show that our coding scheme can attain better performance than the Suh-Tse coding scheme for all channel parameters. Furthermore, the simplicity of the encoding/decoding algorithms is another strong point of our proposed coding scheme compared with the Suh-Tse coding scheme. More importantly, our results show that an optimal coding scheme for the symmetric Gaussian interference channels with feedback can be achieved by using only marginal posterior distributions under a better cooperation strategy between transmitters.Comment: To appear in Proc. of IEEE International Symposium on Information Theory (ISIT), Hong Kong, June 14-19, 201

    Toward high-content/high-throughput imaging and analysis of embryonic morphogenesis

    Get PDF
    In vivo study of embryonic morphogenesis tremendously benefits from recent advances in live microscopy and computational analyses. Quantitative and automated investigation of morphogenetic processes opens the field to high-content and high-throughput strategies. Following experimental workflow currently developed in cell biology, we identify the key challenges for applying such strategies in developmental biology. We review the recent progress in embryo preparation and manipulation, live imaging, data registration, image segmentation, feature computation, and data mining dedicated to the study of embryonic morphogenesis. We discuss a selection of pioneering studies that tackled the current methodological bottlenecks and illustrated the investigation of morphogenetic processes in vivo using quantitative and automated imaging and analysis of hundreds or thousands of cells simultaneously, paving the way for high-content/high-throughput strategies and systems analysis of embryonic morphogenesis

    Indicial response approach derived from Navier-Stokes equations. Part 1: Time-invariant equilibrium state

    Get PDF
    The indicial response approach is recast in a form appropriate to the study of vortex induced oscillations phenomena. An appropriate form is demonstrated for the indicial response of the velocity field which may be derived directly from the Navier-Stokes equations. On the basis of the Navier-Stokes equations, it is demonstrated how a form of the velocity response to an arbitrary motion may be determined. To establish its connection with the previous work, the new approach is applied first to the simple situation wherein the indicial response has a time invariant equilibrium state. Results for the aerodynamic response to an arbitrary motion are shown to confirm to the form obtained previously
    corecore