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SUMMARY

The aim of this research is to recast the indicial response approach in a form appropriate to the study
of vortex-induced oscillations phenomena. We demonstrate that an appropriate form for the indicial response
of the velocity field may be derived directly from the Navier-Stokes equations. For convenience, the study is
divided into three parts. In Part I, we demonstrate, on the basis of the Navier-Stokes equations, how a form of
the velocity response to an arbitrary motion may be determined. To establish its connection with our previous
work, the new approach is applied first to the simple situation wherein the indicial response has a time-invariant
equilibrium state. Results for the aerodynamic response to an arbitrary motion are shown to confirm the form
that we have obtained previously.

INTRODUCTION

The motivation behind this research originates with a recent review article by Tobak et al., which is
an exposition of their approach to the modeling of the aerodynamic contribution to the inertial equations of
motion of a maneuvering aircraft (ref. 1). The approach features the use of nonlinear indicial responses and
generalized superposition integrals. Recognizing its natural connection with ideas from bifurcation theory, the
authors of reference 1 extended their modeling approach to accommodate the potential occurrence of bifur-
cations involving time-dependent equilibrium states. Of particular interest is the first of these, called a "Hopf
bifurcation," wherein a formerly stable time-invariant equilibrium state is replaced by a time-varying periodic
equilibrium state. In the implementation, however, Tobak et al. discovered that an important additional issue
arises along with a Hopf bifurcation: the necessity of specifying phase as well as amplitude and frequency
to completely determine the periodic equilibrium state. Although the amplitude and frequency of the peri-
odic state are determined entirely by flow conditions that are independent of an origin in time, specifying the
phase requires additional information involving an initial condition. Through specification of the phase, the
equilibrium state is required to acknowledge an origin in time.

In aerodynamic applications, the physical origin of a large-scale periodic equilibrium state often is
the onset of vortex-shedding. Of the many examples, Tobak et al. (ref. 1) cited the occurrence of stall on an
airfoil when the angle of attack exceeds a critical value, and the wake of the flow past a cylinder when the
Reynolds number exceeds 50. The latter example, vortex-shedding from a cylinder or, more generally, a bluff
body, is itself a subject that has attracted the attention of researchers for many decades. When the body is
able to interact with the vortex-shedding through, for example, elastic mountings, the consequences are varied
and potentially dramatic. This subject, which has come to be known as "vortex-induced oscillations," has
also inspired a large literature, reflecting the wide range of practical circumstances in which structures may be
endangered by undergoing such oscillations. Excellent surveys of the field have been published by Sarpkaya
(ref. 2) and more recently by Bearman (ref. 3). Both authors noted that in spite of the long and intense interest,
an adequate rationally based mathematical model of the phenomenon still does not exist.

In a first attempt to fulfill the need for a suitable mathematical model of the aerodynamic contribution
to the equation governing the motion of an elastically mounted cylinder immersed in a uniform oncoming
stream, the authors of reference 1 proposed a simple model based on one of the alternative approaches studied
therein. However, the model does not incorporate the memory effects that the specification of phase would
have required. A careful numerical study of the resulting equation of motion, carried out in reference 4 and by
us, suggests that the model proposed is unable to predict the occurrence of the self-sustained oscillations that
experiments have revealed.
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To that end, this study has two purposes: (1) to show how the deficiency of the model proposed in
reference 1 may be remedied to include the effects of memory; and (2) to apply the results of the analysis
to the particular case of flow past a cylinder that is in periodically forced transverse motion. As it turns out,
revising the reference 1 model to include memory effects must be done at the level of the velocity field itself.
We demonstrate that a form for the indicia! response of the velocity field may be derived directly from the
equations governing the fluid motion. These are taken to be the Navier-Stokes equations for time-dependent
incompressible flow.

For convenience, the study will be divided into three parts. In Part I, we demonstrate on the basis
of the Navier-Stokes equations how an indicial response for the velocity field may be formulated, and then
used within a generalized superposition integral to determine the form of the velocity response to an arbitrary
motion. To establish its connection with our previous work, the new approach is applied first to the simple
situation wherein the indicial response has a time-invariant equilibrium state. Results for the aerodynamic
response to an arbitrary motion are shown to confirm the form that we have obtained previously by a variety
of approaches (ref. 1). In Part II, the analysis is then directed to the new situation where the equilibrium state
of the indicial response is periodic in time. A method is derived for specifying its phase, and, by allowing a
correct incorporation of memory effects, this proves sufficient to remedy the deficiency of our previous model.

Part III is the object of the second purpose, namely, to apply the results of the analysis to the particular
case of flow past a cylinder that is in periodically forced transverse motion. We show that our approach
captures the distinctive features of vortex-induced oscillations that have been revealed by the results of careful
experiments on this motion (reported in refs. 2, 3). Finally, we show how the indicial response approach may
be reconciled with a currently popular approach based on the use of amplitude equations.

GENERALIZED SUPERPOSITION INTEGRAL BASED ON
INDICIAL RESPONSE APPROACH

We derive the indicial response approach with emphasis on the physical postulates involved.

For generality, consider an aircraft that has started from rest in the distant past with fixed axial velocity
Uo and zero vertical velocity (cf. fig. 1). Its motion is referred to an X, Y coordinate system that is fixed in
space. It passes through the origin at the arbitrarily chosen initial instant £ = 0, maintaining the constant axial
velocity Uo and simultaneously translating vertically, with the vertical velocity vc at the center of gravity being
an arbitrary function of time f. The angle of attack a is defined as the angle between the resultant velocity
vector and the aircraft's longitudinal axis:

, -i fvc(Q\ ,na = tan ( —— (1)
\ UQ /

Let us note that we specify a constant axial velocity Uo to be in accord with normal operating conditions in
wind- or water-tunnel experiments, wherein the uniform oncoming flow, normally held at constant velocity,
would supply the corresponding value of Uo. To form the indicial response, we need to consider two motions.
In the first one, the aircraft undergoes a variation of angle of attack a(£) from time zero to a time £ = r (cf.
fig. 2). Subsequent to time T, the angle of attack is held constant at a( r). The first motion history therefore is
designated ar(£):

m f «(O : i / 0 < e < r
^ = a(r) : i/£ > r (2)



Figure 1. Maneuver referred to space-fixed (X, Y) and moving (i, j/) coordinates, the latter attached to the
airplane.

Figure 2. Formation of indicial response.



The angle-of-attack history aT(£) is said to belong to a family of motions, all of which are generated
by the "natural" motion history a(£) , and all of which have the characteristic of remaining constant beyond
the instant designated by the subscript, here r. Accordingly, the angle-of-attack history o;T+Ar(0 belongs
to the same family, being the extension of the history or(£) to the instant r + A r, beyond which a remains
constant at or( r + A r) . The second motion needed to form the indicial response, however, does not belong to
this family. In the second motion, the aircraft undergoes the same angle-of-attack history or(0 up to time r.
Subsequent to r, the angle of attack again is held constant, but is given an incremental step change A a over
its previous value of a( r) . The second motion, designated a*(O , is represented as

ffT(0 (3)

where HT(O is thg Heaviside function:

Let us define by u(x , t , r)(x : spatial coordinates, t: time of observation subsequent to r) the velocity field in
the neighborhood of the aircraft.

The indicial response approach is established by making use of the following postulates.

POSTULATE 1: Corresponding to a motion history belonging to the family of motion histories aT( £)
with T 6 [0, t] , there exists a velocity field u[i,aT(OU,r] well defined and supposed known by some
means.

POSTULATE 2: To each member of the family of motion histories a*(£) with T 6 [ 0, t], there exists
a velocity response u[ x, a*(f); t, T] . For any observation time i > r + A r, this velocity response reproduces
the velocity response corresponding to the motion history O;T+AT(£) within a negligible error of t?( A a)2:

The increments A a and A r are connected by the rate-of-change of the angle of attack a( T) = ^, which is
presumed to be defined for each value of T e [ 0, t].

POSTULATE 3: For every value of r 6 [ 0, t], there exists an indicial response ua[ x, a(0; t, T]
defined as

1
or-. ^^

Given a motion history at(£ : £ e [ —oo, t]), it is possible to choose an initial time TO and partition
the time interval [ TO , t] into [ TO , TI , . . . , rn] such that

Tn = t , r>AT = t , Ti - 7V_! = Ar (i = 1, . . . , n) (7)

One has the following relations:

:+i?(Aa)2

»

(8)



Note in (8) that the additional dependencies of u, on x, t, r,( i = 1 , . . . , n) have been omitted for brevity.

By summing up the relations (8) and using Postulate 2, one gets

i=0

or, in the limit as A r — » 0 ,

da • i
rua[i,aT(O;i,T]— + i?(,Aa)2 (10)

CtT

The relation (10) constitutes our main result that will be used in subsequent sections. Notice that it relies on
three physical postulates which have to be satisfied.

CONSTRUCTION OF VELOCITY RESPONSE FOR
MOTION HISTORY: aT( 0

In order to derive the aerodynamic response on the basis of relation (10), we need to establish forms
for the velocity responses to the motions aT(0 and <**(0 over the time interval t — T > 0 . In this and the
following section, we shall demonstrate that the forms can be derived analytically from direct consideration
of the Navier-Stokes equations.

For simplicity, we neglect compressibility effects and assume that the fluid motion is governed by the
Navier-Stokes equations for an incompressible fluid. In a coordinate system attached to the body, the Navier-
Stokes equations have an additional term vc (where vc is the vertical velocity at the mass center and the dot
denotes a derivative with respect to time) to account for the acceleration of the coordinate system relative to
inertial space:

r\ — *

-^ + (u.V)u+ Vp-z/V2u = -'vc (11)
at

Here, u is the velocity field, p is the pressure (normalized with respect to constant density p), and i> is the
kinematic viscosity. We wish to derive a form for the velocity response to the motion aT(0 over the time
interval t — T > 0. Since atT(Q = o(r) = constant for t — r > 0, boundary conditions determining the
velocity response over the interval t — T > 0 are perfectly steady. Consequently, we expect the velocity
response to attain an equilibrium state as the interval becomes large, that is, as t — T — » oo.

The response of the velocity field can be decomposed into an equilibrium state uequii and a transient
component uWons that decays as time increases. The principal condition that we imp.se in Part I is that the
equilibrium state ue?u,j be time-invariant. Thus, as time is referred to T (the instant after which the angle-of-
attack is to be kept constant), we have

u(x,t - T > 0) = uequu(x) + utTans(x, t - T > 0) | . 12.
p( f , t -T>0) =

To simplify the notation, we define
U = t - r > 0 (13)

Let us assume that the equilibrium state (uequu( i) , pequii( %) ) is available, for example, from a solution of the
time-independent ( J^u = vc = 0) version of equation (11).



Substituting (12) into (11) and noting that vc = 0 at t+ = 0( +) , we get the following for the equations
governing utrans:

+ ( Ue,uiJ. V) Uirons + ( uVatu .V) UefluiJ + Verona - ^V2 Uirons + ( UjroM .V) Utrans = 0

V.U,rons = 0 J
(14)

with utrans = 0 on appropriate boundaries dQ .

To find a form for ujrons , we shall first consider a small disturbance u which satisfies the linearized
version of equations (14)

^u +(ue,ul-,.V)u+(u'.V)ue,ul-,+ Vp'-«/V2u = 0 1
V.u = 0 J

with u = 0 on <9£2. Equations (15) constitute a linear eigenvalue problem. Since uequu is independent of
time, the eigensolutions 7*n are also independent of time. It is possible to choose them such that (from ref. 5)

(16)

From equations (15), the corresponding expression for p is

(17)

The eigensolutions 7n(z)(n = 1 , . . .) are associated with the eigenvalues Xn, the latter all having negative
real parts in the physical situation under consideration, wherein the equilibrium state uequu( x) is supposed to
be stable to small perturbations. There is an equation adjoint to (15) having a set of eigensolutions 7^ such
that (from ref. 5) _

<l,7i) =fvdV^(x).^(x) = fy V i , ; l
(7*. 7,-) =fvdV^(x).^(x) = 0 Vi,; J ^

where the brackets { ) denote the scalar product over space. The eigensolutions 7n( i) span a complete
functional space, and one can use this fact to construct a suitable solution form for uWans(i,t+). Returning
now to the full nonlinear equations (14) governing U(rans. let us assign utrans the form resulting from its
projection onto the functional space of the 7*n:

(19)

where the barred terms denote complex conjugates (abbreviated c.c.). It will be convenient to break the pres-
sure term ptrons in (12) into two parts: one following the form of equation (19) and correponding to the linear
part of the disturbance - ..uations, and the other (denoted p) corresponding to the nonlinear part of the distur-
bance equations:

(20)

After inserting equations (19) and (20) into (14) and eliminating the set of terms that identically satis-
fies the linear form (15), we find that the coefficients (Zn(U) satisfy the following equation:

n,m

n. V)7» + i.dmC^.V)^ (21)



Multiplying equation (21) by the vector T/Ci), integrating over space, and using the properties of adjoint
vectors defined by (18), we obtain

n,m

(22)

Notice that the pressure gradient term Vp in equation (21) makes no appearance in equation (22). The prop-
erties of 7n and -yJJ (solenoidal and vanishing on d£l ) ensure that the scalar products they form with gradient
terms (such as Vp) will be identically zero. By defining appropriate coefficients Ajnm , Bjrm , Cjnm and D/nm .
we rewrite (22) as:

n,m

t + ) d m ( t + ) j = 1,... (23)

Equations (23) are transformed into integral equations:

V'+djU* = 0) + X)^nm(a(r)) ds e^^
n,m

n,m

"( r»
•'°n,m

"'* ds e^(a(T))(u-s)3n(s)dTn(5) ; = !,... (24)

Solutions of the system of equation (24) can be obtained by using Picard's method of successive
approximations:

n,m

+ ...

n,m
4- .. .

(25)

where for brevity we have omitted writing the nonlinear terms in 'dndm, dndm,



Solutions d;(t+) of equations (25) have the form of functional expansion series:

n,m

/•*+ /-SO /•»!

/ dso / dai / ds2 - . - (26)
JO JO Jo

The convergence of the series is insured by imposing, for instance, a Lipschitz condition on the integrands
of the four integrals in the right-hand side member of equation (24). Calculation of the series lends itself to
symbolic computation, as shown in reference 6.

To complete the solution for the d/(t+)(; = 1 ,....) at any level of approximation, we are required
to specify their initial values at t+ = 0 , The values of dj( t+ = 0) must be determined from a match of the
velocity fields on either side of £ = r.

U(Z,£ = T_) = «(*,£= TV) (27)

On the negative side of £ = T, in general the velocity field is the resultant of the entire history of the motion:
a(O up to the "present" time £ = T. Through specification of the d; at t+ = 0 in terms of this velocity
field, the velocity response for t+ > 0 acknowledges its dependence on the past motion. The representation
of this past motion in a suitable way is all that remains to be done to realize a complete characterization of
the velocity response for t+ > 0 . We shall defer a discussion of this important step until we have derived the
velocity response to the motion a*(£) and formed the indicia! response. For the present, we simply designate
the dependence of d}(t+) on the past motion as a functional

[0 ,T]) , t + ] ;. (28)

and write the velocity response to the motion aT(Q for t+ > 0 in the form

*(£ 6 [0,r]);U]7n(x,a(r)) + c.c. (29)

CONSTRUCTION OF VELOCITY RESPONSE TO
MOTION HISTORY: «*({)

In addition to constructing the velocity response to the motion a*(O containing a step change in a
at £ = r, we need to be assured that the derived response will satisfy Postulate 2. To that end, consider the
interval r < ^ < r + A r i n which the velocity response changes continuously from u[ aT( 0 ] to u[ ar+AT(O ]
as a result of the continuous change in a over the interval. We intend to show that if the continuous change
in a is replaced by a step change, applied anywhere between r and T + A r, the resulting velocity response at
any observation time t > r + A r will differ from the response to the continuous change in a, u[ ar+Ar ( 01 •
by terms of i?( A or)2.
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In the equation of motion (11), for brevity let

£[u] = (u.V)u + Vp-i/V2u (30)

and let uj be the velocity response to the continuous change in a for r < £ < T + A T. With u = t?i and with
the time variable t+ = t — T, integrate equation (1 1) from t+ = 0 to t+ = A T

/•AT Q /-AT /-AT .
/ j—uidt++ £[ui]dt+ = -/ iTcdt+ (31)
Jo at+ Jo Jo

which gives

UI(AT) -ui(0) + / T£[ui]dt+ = -(tTc(Ar) -vc(0)) = -AtTc (32)
JO

Now let the continuous change in a over the interval T < £ < T + A r b e replaced by a step change of the same
net amplitude A a = at( T + A T) — a( T) , applied at an arbitrary time T* anywhere between r and T + A r. Let
U2 be the corresponding velocity response over the interval 0 < t+ < A r, and integrate equation (11) again
(note that the initial state at t+ = 0 remains unaltered so that u2 (0) = u\ (0)):

T Ar T (33)
o at+ Jo JO

which gives

u2(Ar) -u2(0) + / T C[u2]dt+ = -Avc (34)
Jo

u2 = u[aT(0] + terms of. ^ '

Taking the difference between equations (32) and (34) yields

r&T

u 2 ( A T ) - U I ( A T ) + / (£[u2] -C[ui])dt+ = 0 (35)
JO

But
ui = u[aT(0] + terms of t?(Aa)

Hence, in equation (35)

/"Ar - - Aa , ^ ^ v 2

Jo 2 Ul + d — ^

where the underline denotes an average over time.

Therefore, u2 and ui differ by terms of i?(Aa)2 at t+ = AT. For t+ > AT, note that ui =
U[OT+AT(O]« whereas u2 = u[o£»(£)]. Since for all t+ > AT, boundary conditions and equations of
motion are identical for the two velocity responses, their solutions will differ only by terms of the order of
the difference in initial conditions, which, as we have just seen, is of i?( A a)2. Thus, we are assured that the
velocity response u[ ar*(0 ] will satisfy Postulate 2. For simplicity, we put, henceforth, T* = T. It remains to
develop a form for u[ «*(£) ] analogous to that for u[ oT(0 ].

The derivation for u[ a*( O ] is required to account for the effect of a step change in at at £ = T. This is
reflected in the equation of motion by the presence of an impulsive forcing term arising from the time-derivative
of the step change in vc,

r\ ^



where, to first order in A or, the magnitude of the step change in vc, denoted A vc, is

Avc=C7osec2(a(r))Aa (39)

The derivation parallels that for u[ ar(O ]• Again, the velocity response is decomposed into a time-invariant
equilibrium state and a transient component,

u( x, t+) = ue,uij( i, a( T) + A a) + ujrans ( x, U, a( T) + A a) ( 40)

where now both components are to be evaluated at the new level of angle of attack, or( r) + A a. The equation
for utTara takes the same form as that of equation (14) with the exception that the right-hand side now contains
the impulsive forcing term —A {TC6( t+).

As before, we try to form a solution by a suitable projection onto the functional space of the set of
eigcnsolutions of the linearized homogenous equation

Utran*(x,t+) =

PtTana(x,t+) =

where the eigensolutions (7n,Pn) are now those appropriate to the new level of a, cx(r) + A a. Multiplying
the resulting equation (the counterpart of eqs. (21)) by the adjoint vector T*( x, or( r) + A a), integrating over
space and simplifying, we get the counterpart of equations (23):

n(MUHn(aO + MUHn(aOl 1
n(hn(t+)p'n(x) + hn(t+)p'n(x)) + p(x,t+) J

hj(t+) - \jhj - ^ Ainmhnhm + ... + Dj-mhnhm = -Aa CjS(U) ; = !,... (42)
n,m

where
Aa c,(a(r) + Acv) = f ^(f,a(T) + &a)AvcdV (43)

Jv J

and the eigenvalues A; as well as the coefficients Ajnm, . . . , Djrm have the same definitions as before, albeit,
now referred to a( T) + A or rather than to a( r).

Writing equation (42) as integral equations yields

»r A*Jo

n,m

n,m

(«)/*">( 5> ; = i, • • • (44)

which again can be solved by successive approximations, once the open constants Cj have been determined.
To determine them, a condition on the velocity fields on either side of £ = r must be imposed. Here, it is
no longer appropriate to require the continuity of the velocity fields across £ = r. Rather, we must admit the
existence of a discontinuity in the velocity fields across £ = r, reflecting the step change in a that occurs there.
Accordingly, we shall require that the velocity fields on either side of £ = r differ by an amount proportional
to the step change in a at £ = r. The condition is

,r) (45)
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Using equations (12) and (19) for u[aT(O,£ = T-L and equations (40) and (41) for u[a*(O>£ = T+], we
have in equation (45),

= Ac* tf(t+ = 0) O(x,r) (46)

L̂.

Multiplying equation (46) by the adjoint vector 7. ( i, a( r) + A a) and integrating over space.we get

hj(t+ = 0) = {^(a + Aa),-(ue,uii(a<+ Aa) -ue,uii(o!))

Aa H(U = 0) $(£, r) } (47)
n

Comparing equation (47) with (44) evaluated at t+ = 0 , we have

Cj = { ?j(a+ Ac*),- (uefltta(a+ A a) - uegui;(a)) + ̂  dn(t+ = 0)7B(a) + Mn } (48)
n

and
<T7(i)a(r) + Aa),0(i ,r)) = -c; (49)

Equation (48) determines the form of Cj, and a comparison of the form of c, (cf. eq. (43)) with equation (49)
reveals that A a O is simply A vc. The latter result implies that the velocity step imposed to the body, through
the step change in angle of attack, is transferred instantaneously to the velocity field. The form of C; can be
simplified by retaining only terms to the first order in A a, since that is all we shall need to form the indicial
response. After making extensive use of the properties of scalar products of adjoint vectors, we get

; (50)
oa J

with

P; = -{7*(i,a(r)),^u[ar(0^ = T]) . (51)

Returning to the integral equation (44) for the h} ( t+ ) with the values of Cj from equation (48) inserted,
we get the following equation where only terms to the first order in A or are retained:

a(T))t+d;-(U = 0) + A a. (ex>(a(T))ud;-(t+ = 0)) +

* ds
n,m " n,m

x A j n m e u - s hn(S)hm(s) + . . .+

) (52)

Anticipating the form of the result, we let

/V(t+) = d;(U) + A a. f ̂ -d/(t+) + //(*+)) + i?(Aa)2 (53)
\oot J

11



Inserting equation (53) in (52), we get linear integral equations for the /;(U)O = 1 , • • •) of the form

(s) + dm(s) /„(*)) ds

n,m

n,m

fU eX>('+-8) 5n(s)/ro(S) + 3m(s)7n(s) ds (54)

where the eigenvalues \j and the coefficients Ajnm ..... D;nm are to be evaluated at a( r) . Equation (54) can
be solved by successive approximations. Given the form (53) and assuming the /; determinable from (54),
we are now able to write the form of u[ a*(£) ] (cf. eq. (40)) as

(
o \

d*(U) + Aa— dn(U) + Aa/n(t+)J ̂ (f.^r) + Aa) + c.c.

(55)

Again systematically retaining only terms to the first order in A a in (55), we have finally,

o

-tT[ orr( 0 1

INDICIAL A^fD TOTAL RESPONSES OF THE VELOCITY FIELD

The forms we have derived for u[aT(Ol i° equation (29) and u[ <**(£)] m equation (55) satisfy
Postulates 1 and 2. Postulate 3 presumes the existence of a limit as A or — » 0 such that the indicial response
can be defined as

(57)
A a /

We see from the way we have derived equation (56) that the limit (defined by the right-hand side of eq. (57))
will in fact exist, so that Postulate 3 can be satisfied. From equation (56), we have for the indicial response of
the velocity field the following:

o

c.c. (58)

- ,«, i r ^tnx,<i,a(O;t,T] = hm I
Aa-»0 \

The total response of the velocity field is obtained by summing the indicial response along the motion history
att(O according to equat:on (10)

u( x, t) = u( x, TO ) + / dr— \ — (ue,u,j + ufrans ) + J) fn(U )in( x, a( T) ) + c.c. I ( 59)
JTS dr [Oat n J

that is,

u( i,0 = u( x, TO ) + uequii ( x, a( 0 ) - ue,u,-j( x, a( TO ) )

UHn(^a(T)) + C-C' (60)

12



In experiments, one usually maintains the angle of attack of the system constant for some sufficiently
long time before letting it oscillate. Under these circumstances, the velocity field at £ = TO is practically equal
to its equilibrium value. Therefore, equation (60) is reduced to

.c.l
J

c.

(61)
Equation (61) has the following form:

/•' da - r
u(i,t) = ue,u,-j( z, <*(*)) + / dr— F[d, ;[«T(0 ,U = Q ] ; t + ] (62)

•/TO Q>T

with the functional dependence of £ determined by the initial condition d} ( t+ = 0) ( ; = 1 , . . .) , according to
equations (25), (26), and (54).

DETERMINATION OF THE INITIAL CONDITIONS d,-(t+ = 0)(; = 1 , . . .)

According to equations (25), (26), (54), and (61), the indicial response of the velocity field is com-
pletely known if the initial values dj(t+ = 0)(; = 1 , . . .) are determined. It is possible to derive an equation
governing the behavior of dj(t+ = 0) . Indeed, as stated previously, the value of the velocity field at £ = r is
the resultant of the entire motion history up to the present time f = r, aT(£ : £ £] — oo, r[). According to
relation (10), it is equal to

u(z,£ = r) = u(i ,£= -oo) + / ds Q;(S)UQ - (63)
J— 00

By using equations (29) and (61), equation (63) can be transformed as

c.c.

= uequii(x,a(T)) + I dsa(s) \ I Y)dn(T- s)7n(f,a(s))
J-oo OOt(S) n[

. (64)

It is shown in the appendix that the dj(t+ = 0) are governed by the following equation, derived from
equation (64):

= 0)= f
J-

(65)
where the quantities gn( r— s) obey linear integral equations involving the unknown quantities d;( s = 0) (;' =
1 , . . .) and other quantities that are known such as 7,, , ueguil,-A;nm , • • • , and -D/nm • Accordingly, equation (65)
corresponds to a Volterra integral equation of the second kind.

To proceed further, we need to consider two cases, first a body undergoing an externally forced motion,
and second, a body undergoing an unforced motion. In the former case, the motion history is externally
imposed and therefore known; in the latter case, it is unknown.
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Externally Driven Motion

In this case, the angle of attack a( s) is known. The Volterra integral equation (65) governing dj ( t+ =
0) can be solved in principle, once the values of the equilibrium state of the velocity field ueguij, of the eigen-
values \j(j = 1 , . . .) and of the eigenvectors 7;(/ = 1 , . . .) are determined from the known values of the
angle of attack.

Experimentalists commonly take the forcing as a periodic function of time, athough one can imagine
different types of forcing. We shall show in the following that in the case of periodic external excitation, the
coefficients dj(t+ = 0) can be decomposed into a Fourier series of frequency w, the forcing frequency. Indeed,
according to equation (65), the initial values dj(t = r) (;' = 1 , . . .) have the following analytical form:

= r)=
J-

(66)

We show first that the integral constituting the right-hand side of equation (66) is periodic in time with
same period T as the external forcing. To that end, let us make the following change of variables:

T = T' + I 1 (67)s = s + T J

The integral becomes, by using the periodic property of a( s),

r •
7-oo SCl S ; ~ S n~ ' • • • >a S >aT 'T

J-oo ; V ' " ' ' ' ' )

Therefore, according to (68)

which is the property announced previously. Because the d;(t+ = 0)(; = 1,...) are periodic in time with
period equal to T, they can be decomposed into a Fourier series of frequency uj = 2 it/T:

(70)

Since the value of d;(t+) is governed by equation (26), it has the same property as d;-(t+ = 0) of being periodic
in time with the same frequency w. On returning to the value of the velocity field given by equation (29), it
is evident that u(i, a, .'<;)) is also periodic in time with the same frequency as the excitation. Accordingly,
the velocity field can be decomposed into a Fourier series of frequency w. This result is in agreement with
theoretical predictions of Joseph (ref. 7) related to a body excited by a periodic forcing, in a Reynolds number
range such that the equilibrium state at fixed a is time-invariant and stable.

One can approximate equation (70) in the case of a slowly varying motion as

that is,
i /• . ry\ J / / \ ' ( \\ ( Ty\
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Elastically Mounted Body in Unforced Motion

In the case of an elastically mounted body in unforced motion, the angle-of-attack motion history a( s)
is unknown. One is faced with solving equation (65) coupled with the equation of motion governing the body,
according to a scheme of advancing step by step in angle of attack. In addition to being complicated, the above
procedure does not give any insight into the form of d;(t+ = 0) . It is possible, however, to get an approximate
analytical form of dj(t+ = 0) by making use of the following reasoning. Let us first note that according to
equations (25), (26), (54), and (65), the value of the velocity field contains terms such as

exp{A;(a(r))(t-T)} ; = !,...

under an integration over time. Hence, because all the real parts of X; are negative, the effect of a distant-past
motion history of the angle of attack on the present value of the velocity field is fading away, so that it is
principally the recent motion history of a that determines the present value of the velocity field. In as much
as one is concerned only with a recent-past motion history, one can consider fitting it over the recent past to
a known motion history of the system. The latter can be provided, for instance, by experiments made under
external periodic forcing. Under this approximation, the analytical dependence of dj(t+ = 0) for an elastically
mounted body will be the same as for a periodically driven body.

For a slowly varying unforced motion, dj(t+ = 0) obeys equation (72). As a(r) <C a(r) , one can
expand dj :

dj(U = 0) = dj(a(T),a(r)) = d;(a(r),0) + «(r) + t?(62(r)) (73)

As a consequence of the results of this section, one can rewrite relation (62) as the following, by using relation
(72):

f * da -
u( x, t) ~ £,„«( x, o( t) ) + / dr— f( a( r) , a( r) , U ) ( 74)

Jo dr

DETERMINATION OF NORMAL FORCE

The pressure can be derived from the velocity field by using the Navier-Stokes equations. According
to equations (12), (20), and (21), the pressure depends on d;(t+)(; = 1 , . . .) as

p( X , U ) = Pe,uij( l) + Ptrans ( d, ( U ) , / = 1 , . . .) (75)

Since the d;(t+)(; = 1 , . . .) depend on their initial value according to equations (25) and (26), one has

p(z,t+) = pe,u,-Ki,Q((0) + Ptrana(dj(t+ = 0),; = 1,...) (76)

The value of the normal force N (normalized with respect to density p) is composed of a contribution
from the (normalized) surface pressure and a viscous contribution arising from the skin friction at the surface.
We derive a form for the normal force containing the two components that is applicable in the case of a
two-dimensional flow. The restriction is imposed for simplicity only; generalization to accommodate three-
dimensional flow is straightforward. Let S denote the body cross section, / a unit vector directed normal to
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the axial velocity UQ , n and f unit vectors, respectively, normal and tangential to the surface element dS. Let
C be the magnitude of the vorticity vector, determinable from the velocity field through £ =| V x u |. Then,

N = f p( x, t) |s j.ndS + f v C( x, t) |s J.idS ( 77)
Js Js

As shown previously, p and tT (and hence Q can be separated, respectively, into an equilibrium com-
ponent, which depends only on the instantaneous value of a, and a transient component, which depends on the
initial values of dj(j = 1 ,.. .)• It follows that CN, the dimensionless form of the normal force, may be given
the form

•i /"'+ doi
CN(t) = C#ulWt)) - / dr— ?[dj(aT(O,U = 0] ,t+,r] (78)

Jo or

where the value of the function T approaches zero as t — T — » oo, a result of the properties of dn(t+) . Relation
(78) was derived in previous work (ref. 8) on the basis of a functional analysis approach; in reference 8, the
function T was called the deficiency function. The value of the normal force can be approximated as the
following, by using equations (72):

CN(t) ~ C#ui'(a(t)) - jf* dT^?(oi(r) ,a(r), t+) (79)

and by using equation (73):

(80)

(81)

According to relation (81), the value of the normal force depends only on the value of angle of attack
a and of its derivative a at the time of observation t. In other words, only a recent-past motion history of the
angle of attack at £ < t is taken into account through the dependence on d( t) . The logic underlying relation
(81) forms the basis for most mathematical models in flight dynamics, hi spite of its simplicity, it has been
capable of reproducing a great variety of the characteristics of aircraft motions (see, e.g., ref. 9).

CONCLUSIONS

We conclude that in the case of a time-invariant equilibrium state, derivation of the indicia! response
of the velocity field dir^dy from the Navier-Stokes equations leads to an analytical form of the normal force
which confirms the form of existing mathematical models. Applied to the next physical situation of a periodic
time-varying equilibrium state, our approach will show that the same level of mathematical modeling will no
longer hold, but rather will require considerable amendment, owing to the presence of the phase characteristic
of the periodic equilibrium state.
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APPENDIX
DERIVATION OF EQUATIONS GOVERNING INITIAL CONDITIONS

In the following, we propose to derive the equations governing the initial conditions d/(t+ = 0)(;
1,...).

Let us start with the following equation derived directly from equation (64) of the main text:

T — Q I W I T f\f( Q 1 I -^ f* f* > I A I i— **/ (Tl\ *j Qt\ **// ' C.C. r ^/\1^

J

Multiplying equation (Al) by the adjoint vector ^( x, a( T)) and integrating over space, one gets

Equation (A2) would constitute a Volterra integral equation of the second kind if the quantities -j^dj •( T—
s)(j = 1 1 • • •) were not present. We shall show in the following that, indeed, the quantities g;(; = 1 , . . .)
defined as

9j=-j^d i(r-8) + fj(T-a) (A3)

do not contain any element such as -j^dj( T — s) (;' = 1 , . . .)•

Let us first write the following equations governing /;( r -r s) , derived from equations (54):

n,m

+ E£>;nm /"T '*ie^(T— "^^(aO/JaiJ + dntCaO/Jsi)) (A4)
n,m •'0

where the quantities {Vj + gjd;) do not contain any element -fad}-(T— s) (j = 1 , . . . )• Indeed, one can show
by using equation (51) that

f\

}( x, a( s) ) , ue,u, j( x, a( s) )

<A5)
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The quantities -g^djd = 1, • • •) can be obtained from equation (24) as

dot da r^ Jo

;D*-j[ < fa ie

; = !,... (A6)

with Qj(j = 1,...) denned as

n,fn '

i) .a™(ai) ;=! , . . . (AT)

that is, the quantities Q; are independent of ̂ d} (j = 1 , . . .)•

Adding equation (A4) to (A6), one gets

n,m

T" ; = !,... (A8)
n,m

The equations governing g}(j = 1,...) do not contain any element -j^d,-(j = 1,...), as announced previously.
Thus, equation (A2) does in fact constitute a Volterra integral equation of the second kind, as stated in the text.
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