4,114 research outputs found

    A path planning control for a vessel dynamic positioning system based on robust adaptive fuzzy strategy

    Get PDF
    The thrusters and propulsion propellers systems, as well as the operating situations, are all well-known nonlinearities which are caused less accuracy of the dynamic positioning system (DPS) of vessels in the path planning control process. In this study, to enhance the robust performance of the DPS, we proposed a robust adaptive fuzzy control model to reduce the effect of uncertainty problems and disturbances on the DPS. Firstly, the adaptive fuzzy controller with adaptive law is designed to adjust the membership function of the fuzzy controller to minimize the error in path planning control of the vessel. Secondly, the H∞ performance of robust tracking is proved by the Lyapunov theory. Moreover, compared to the other controller, a simulation experiment comprising two case studies confirmed the efficiency of the approach. Finally, the results showed that the proposed controller reaches control quality, performance and stability

    Heun Functions and the energy spectrum of a charged particle on a sphere under magnetic field and Coulomb force

    Get PDF
    We study the competitive action of magnetic field, Coulomb repulsion and space curvature on the motion of a charged particle. The three types of interaction are characterized by three basic lengths: l_{B} the magnetic length, l_{0} the Bohr radius and R the radius of the sphere. The energy spectrum of the particle is found by solving a Schr\"odinger equation of the Heun type, using the technique of continued fractions. It displays a rich set of functioning regimes where ratios \frac{R}{l_{B}} and \frac{R}{l_{0}} take definite values.Comment: 12 pages, 5 figures, accepted to JOPA, november 200

    The Effect of Neonatal Leptin Antagonism in Male Rat Offspring Is Dependent upon the Interaction between Prior Maternal Nutritional Status and Post-Weaning Diet

    Get PDF
    Epidemiological and experimental studies report associations between overweight mothers and increased obesity risk in offspring. It is unclear whether neonatal leptin regulation mediates this association between overweight mothers and offspring obesity. We investigated the effect of neonatal treatment with a leptin antagonist (LA) on growth and metabolism in offspring of mothers fed either a control or a high fat diet. Wistar rats were fed either a control (CON) or a high fat diet (MHF) during pregnancy and lactation. Male CON and MHF neonates received either saline (S) or a rat-specific pegylated LA on days 3, 5, and 7. Offspring were weaned onto either a control or a high fat (hf) diet. At day 100, body composition, blood glucose, β-hydroxybutyrate and plasma leptin and insulin were determined. In CON and MHF offspring, LA increased neonatal bodyweights compared to saline-treated offspring and was more pronounced in MHF offspring. In the post-weaning period, neonatal LA treatment decreased hf diet-induced weight gain but only in CON offspring. LA treatment induced changes in body length, fat mass, body temperature, and bone composition. Neonatal LA treatment can therefore exert effects on growth and metabolism in adulthood but is dependent upon interactions between maternal and post-weaning nutrition

    Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    Get PDF
    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed

    Particle Acceleration and the Production of Relativistic Outflows in Advection-Dominated Accretion Disks with Shocks

    Full text link
    Relativistic outflows (jets) of matter are commonly observed from systems containing black holes. The strongest outflows occur in the radio-loud systems, in which the accretion disk is likely to have an advection-dominated structure. In these systems, it is clear that the binding energy of the accreting gas is emitted primarily in the form of particles rather than radiation. However, no comprehensive model for the disk structure and the associated outflows has yet been produced. In particular, none of the existing models establishes a direct physical connection between the presence of the outflows and the action of a microphysical acceleration mechanism operating in the disk. In this paper we explore the possibility that the relativistic protons powering the jet are accelerated at a standing, centrifugally-supported shock in the underlying accretion disk via the first-order Fermi mechanism. The theoretical analysis employed here parallels the early studies of cosmic-ray acceleration in supernova shock waves, and the particle acceleration and disk structure are treated in a coupled, self-consistent manner based on a rigorous mathematical approach. We find that first-order Fermi acceleration at standing shocks in advection-dominated disks proves to be a very efficient means for accelerating the jet particles. Using physical parameters appropriate for M87 and SgrA*, we verify that the jet kinetic luminosities computed using our model agree with estimates based on observations of the sources.Comment: accepted for publication in the Astrophysical Journa
    corecore