504 research outputs found

    Selective Oxidation of Alkanes over Nanostructured Oxide Catalysts

    Get PDF

    Convergence bounds for local least squares approximation

    Full text link
    We consider the problem of approximating a function in a general nonlinear subset of L2L^2, when only a weighted Monte Carlo estimate of the L2L^2-norm can be computed. Of particular interest in this setting is the concept of sample complexity, the number of sample points that are necessary to achieve a prescribed error with high probability. Reasonable worst-case bounds for this quantity exist only for particular model classes, like linear spaces or sets of sparse vectors. For more general sets, like tensor networks or neural networks, the currently existing bounds are very pessimistic. By restricting the model class to a neighbourhood of the best approximation, we can derive improved worst-case bounds for the sample complexity. When the considered neighbourhood is a manifold with positive local reach, its sample complexity can be estimated by means of the sample complexities of the tangent and normal spaces and the manifold's curvature.Comment: 17 pages, 4 figures, text overlap with arXiv:2108.0523

    Nanostructured MoV Catalysts in Activation of Light Alkanes

    No full text

    Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective

    Get PDF
    The urgency with which fundamental questions of energy conversion and the sustainable use of raw materials must be solved today requires new approaches in catalysis research. One way is to couple high-throughput experiments with machine learning methods in autonomous catalyst development. The fact that the active form of a catalyst is only created under working conditions and that the catalytic function is always in a very complex relationship with a number of physical and chemical properties of the material makes it essential to integrate operando experiments into systems of autonomous catalyst development. The analysis of the current state of the art and knowledge revealed a lack of integration of the numerous, technically very different unit operations in catalyst discovery and a great need for new developments in online and in situ analytics, especially in catalyst synthesis. To pave the way for autonomous processing of work packages by robots, it is proposed to advance the automation of single unit operations currently performed by human researchers by introducing standard operating procedures described in handbooks. The work according to rigorous protocols produces, on the one hand, reliable data that can be evaluated using artificial intelligence and facilitates on the other hand the automation. Special attention should be paid to the acquisition and real-time evaluation of analytical data in in situ and operando experiments as well as the automatic storage of data and metadata in databases

    Single-Site Vanadyl Species Isolated within Molybdenum Oxide Monolayers in Propane Oxidation

    No full text
    The cooperation of metal oxide subunits in complex mixed metal oxide catalysts for selective oxidation of alkanes still needs deeper understanding to allow for a rational tuning of catalyst performance. Herein we analyze the interaction between vanadium and molybdenum oxide species in a monolayer supported on mesoporous silica SBA-15. Catalysts with variable Mo/V ratio between 10 and 1 were studied in the oxidation of propane and characterized by FTIR, Raman, and EPR spectroscopies, temperature-programmed reduction, UV/vis spectroscopy in combination with DFT calculations, and time-resolved experiments to analyze the redox properties of the catalysts. Molybdenum oxide (sub)monolayers on silica contain mainly dioxo (Si–O−)2Mo(═O)2 species. Dilution of silica-supported vanadium oxide species by (Si–O−)2Mo(═O)2 prevents the formation of V–O–V bonds, which are abundant in the pure vanadium oxide catalyst that predominantly contains two-dimensional vanadium oxide oligomers. Existing single vanadyl (Si–O−)3V(═O) sites and neighboring (Si–O−)2Mo(═O)2 sites do not strongly interact. The rates of reduction in propane and of oxidation in oxygen are lower for single metal oxide sites compared to those for oligomers. The rate of propane oxidation correlates with the overall redox rates of the catalysts but not linearly with the chemical composition. Retarded redox behavior facilitates selectivity toward acrolein on single-site catalysts. The abundance of M–O–M bonds is more important in terms of activity and selectivity compared to the nature of the central atom (molybdenum versus vanadium)
    • 

    corecore