3 research outputs found

    Targeting AXL and the DNA damage response pathway as a novel therapeutic strategy in melanoma

    Get PDF
    Receptor tyrosine kinase AXL is found upregulated in various types of cancer, including melanoma, and correlates with an aggressive cancer phenotype, inducing cell proliferation and epithelial-to-mesenchymal transition. In addition, AXL has recently been linked to chemotherapy resistance, and inhibition of AXL is found to increase DNA damage and reduce expression of DNA repair proteins. In light of this, we aimed to investigate whether targeting AXL together with DNA damage response proteins would be therapeutically beneficial. Using melanoma cell lines, we observed that combined reduction of AXL and CHK1/CHK2 signaling decreased proliferation, deregulated cell-cycle progression, increased apoptosis, and reduced expression of DNA damage response proteins. Enhanced therapeutic effect of combined treatment, as compared with mono-treatment, was further observed in a patient-derived xenograft model and, of particular interest, when applying a three-dimensional ex vivo spheroid drug sensitivity assay on tumor cells harvested directly from 27 patients with melanoma lymph node metastases. Together, these results indicate that targeting AXL together with the DNA damage response pathway could be a promising treatment strategy in melanoma, and that further investigations in patient groups lacking treatment alternatives should be pursued

    A Three-dimensional Ex Vivo Viability Assay Reveals a Strong Correlation Between Response to Targeted Inhibitors and Mutation Status in Melanoma Lymph Node Metastases

    No full text
    Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients
    corecore