9 research outputs found

    Dataset of proteins mapped on HepG2 cells and those differentially abundant after expression of the dengue non-structural 1 protein

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2017-07-06T11:18:28Z No. of bitstreams: 1 kissila_rabello_etal_IOC_2017.pdf: 242955 bytes, checksum: 46636369b4ac26eee8399580fb957a75 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2017-07-06T11:32:00Z (GMT) No. of bitstreams: 1 kissila_rabello_etal_IOC_2017.pdf: 242955 bytes, checksum: 46636369b4ac26eee8399580fb957a75 (MD5)Made available in DSpace on 2017-07-06T11:32:00Z (GMT). No. of bitstreams: 1 kissila_rabello_etal_IOC_2017.pdf: 242955 bytes, checksum: 46636369b4ac26eee8399580fb957a75 (MD5) Previous issue date: 2017-02Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biotecnologia e Fisiologia das Infecções Virais. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biotecnologia e Fisiologia das Infecções Virais. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Laboratório de Proteômica e Engenharia de Proteínas. Curitiba, PR, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biotecnologia e Fisiologia das Infecções Virais. Rio de Janeiro, RJ. Brasil.The data supplied in this article are related to the research article entitled "The effect of the dengue non-structural 1 protein expression over the HepG2 cell proteins in a proteomic approach" (K. Rabelo, M.R. Trugillo, S.M. Costa, B.A. Pereira, O.C. Moreira, A.T. Ferreira et al., 2016) [1]. The present article provides the inventory of peptides and proteins mapped in a hepatocyte cell line (HepG2) by mass spectrometry in the presence of the non-structural protein 1 (NS1) of Dengue 2 virus (DENV2). Cells were transfected with pcENS1 plasmid, which encodes the DENV2 NS1 protein, or the controls pcDNA3 (negative control) or pMAXGFP, encoding the green fluorescent protein (GFP), a protein unrelated to dengue. Differentially abundant protein lists were obtained by comparing cells transfected with pcENS1 and controls

    SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites

    No full text
    (1) Background: coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to hematological dysfunctions, but there are little experimental data that explain this. Spike (S) and Nucleoprotein (N) proteins have been putatively associated with these dysfunctions. In this work, we analyzed the recruitment of hemoglobin (Hb) and other metabolites (hemin and protoporphyrin IX-PpIX) by SARS-Cov2 proteins using different approaches. (2) Methods: shotgun proteomics (LC–MS/MS) after affinity column adsorption identified hemin-binding SARS-CoV-2 proteins. The parallel synthesis of the peptides technique was used to study the interaction of the receptor bind domain (RBD) and N-terminal domain (NTD) of the S protein with Hb and in silico analysis to identify the binding motifs of the N protein. The plaque assay was used to investigate the inhibitory effect of Hb and the metabolites hemin and PpIX on virus adsorption and replication in Vero cells. (3) Results: the proteomic analysis by LC–MS/MS identified the S, N, M, Nsp3, and Nsp7 as putative hemin-binding proteins. Six short sequences in the RBD and 11 in the NTD of the spike were identified by microarray of peptides to interact with Hb and tree motifs in the N protein by in silico analysis to bind with heme. An inhibitory effect in vitro of Hb, hemin, and PpIX at different levels was observed. Strikingly, free Hb at 1mM suppressed viral replication (99%), and its interaction with SARS-CoV-2 was localized into the RBD region of the spike protein. (4) Conclusions: in this study, we identified that (at least) five proteins (S, N, M, Nsp3, and Nsp7) of SARS-CoV-2 recruit Hb/metabolites. The motifs of the RDB of SARS-CoV-2 spike, which binds Hb, and the sites of the heme bind-N protein were disclosed. In addition, these compounds and PpIX block the virus’s adsorption and replication. Furthermore, we also identified heme-binding motifs and interaction with hemin in N protein and other structural (S and M) and non-structural (Nsp3 and Nsp7) proteins

    Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis

    No full text
    The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome

    Venomics Profiling of Thamnodynastes strigatus Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes

    No full text
    Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (similar to 47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundacao Oswaldo Cruz/PDTISFundacao Oswaldo Cruz/PDTISInstituto Nacional de Ciencia e Tecnologia em Toxinologia (INCTTox)Instituto Nacional de Ciencia e Tecnologia em Toxinologia (INCTTox

    Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19

    No full text
    Abstract Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity

    Bothrops insularis venomics: A proteomic analysis supported by transcriptomic-generated sequence data

    No full text
    A joint transcriptomic and proteomic approach employing two-dimensional electrophoresis, liquid chromatography and mass spectrometry was carried out to identify peptides and proteins expressed by the venom gland of the snake Bothrops insularis, an endemic species of Queimada Grande Island, Brazil. Four protein families were mainly represented in processed spots, namely metalloproteinase, serine proteinase, phospholipase A(2) and lectin. Other represented families were growth factors, the developmental protein G10, a disintegrin and putative novel bradykinin-potentiating peptides. The enzymes were present in several isoforms. Most of the experimental data agreed with predicted values for isoelectric point and M(r) of proteins found in the transcriptome of the venom gland. The results also support the existence of posttranslational modifications and of proteolytic processing of precursor molecules which could lead to diverse multifunctional proteins. This study provides a preliminary reference map for proteins and peptides present in Bothrops insularis whole venom establishing the basis for comparative studies of other venom proteomes which could help the search for new drugs and the improvement of venom therapeutics. Altogether, our data point to the influence of transcriptional and post-translational events on the final venom composition and stress the need for a multivariate approach to snake venomics studies. (c) 2009 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)FAPERJ/Rio de Janeiro Proteomics NetworkCAPESCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPqFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESPFundacao ButantanFundação Butanta

    Venomics Profiling of <i>Thamnodynastes strigatus</i> Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes

    No full text
    Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake <i>Thamnodynastes strigatus</i>, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules

    Venomics Profiling of <i>Thamnodynastes strigatus</i> Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes

    No full text
    Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake <i>Thamnodynastes strigatus</i>, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules
    corecore