10 research outputs found

    A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center

    Get PDF
    AbstractSegmentation of the vertebrate hindbrain into multiple rhombomeres is essential for proper formation of the cerebellum, cranial nerves and cranial neural crest. Paralog group 1 (PG1) hox genes are expressed early in the caudal hindbrain and are required for rhombomere formation. Accordingly, loss of PG1 hox function disrupts development of caudal rhombomeres in model organisms and causes brainstem defects, associated with cognitive impairment, in humans. In spite of this important role for PG1 hox genes, transcriptional targets of PG1 proteins are not well characterized. Here we use ectopic expression together with embryonic dissection to identify novel targets of the zebrafish PG1 gene hoxb1b. Of 100 genes up-regulated by hoxb1b, 54 were examined and 25 were found to represent novel hoxb1b regulated hindbrain genes. The ppp1r14al gene was analyzed in greater detail and our results indicate that Hoxb1b is likely to directly regulate ppp1r14al expression in rhombomere 4. Furthermore, ppp1r14al is essential for establishment of the earliest hindbrain signaling-center in rhombomere 4 by regulating expression of fgf3

    Lingual kinematic strategies used to increase speech rate: Comparisons between younger and older adults

    Get PDF
    The primary objective of this study was to assess the lingual kinematic strategies used by younger and older adults to increase rate of speech. It was hypothesised that the strategies used by the older adults would differ from the young adults either as a direct result of, or in response to a need to compensate for, age-related changes in the tongue. Electromagnetic articulography was used to examine the tongue movements of eight young (M526.7 years) and eight older (M567.1 years) females during repetitions of /ta/ and /ka/ at a controlled moderate rate and then as fast as possible. The younger and older adults were found to significantly reduce consonant durations and increase syllable repetition rate by similar proportions. To achieve these reduced durations both groups appeared to use the same strategy, that of reducing the distances travelled by the tongue. Further comparisons at each rate, however, suggested a speed-accuracy trade-off and increased speech monitoring in the older adults. The results may assist in differentiating articulatory changes associated with normal aging from pathological changes found in disorders that affect the older population

    Value and limitations of coronary blood flow measurement in man

    No full text
    corecore