21 research outputs found

    Search and multi-frequency follow-up studies of radio transients: novel approaches and large campaigns

    Get PDF
    One of the most fascinating phenomena in modern radio astronomy is related to the Fast Radio Bursts (FRBs). FRBs are Jy-intense, ms-duration radio transients of extra-galactic origin, whose nature is not assessed yet. To date, FRBs have been observed only in the radio band. Despite their origin has not been disambiguated yet, observational facts point towards highly magnetised neutron stars, such as magnetars, as the putative sources behind at least some of them. In particular, on April 2020 the Galactic magnetar SGR J1935+2154 emitted a radio flash closely resembling the ones produced by the FRBs, with simultaneous detections in the X-rays. This result remarkably strengthened the FRB/magnetar link and strongly motivates panchromatic campaigns towards FRB sources in order to find, as in the case of SGR J1935+2154, their high-energy and also, possibly, optical/infrared counterparts. On one side, a multi-wavelength (MWL) detection of a FRB would lead to the confirmation of the aforementioned FRB/magnetar connection and/or to the evidence that other classes of astrophysical objects/events could be also responsible for a fraction of these radio transients. On the other hand, the observation of a MWL burst (outside the radio band) might discriminate between various proposed emission models, some of which predict MWL emission(s) simultaneous with the radio, while others prescribe that the MWL emission should occur well before or after the radio burst. However, any panchromatic detection of a FRB will mainly rely on the detection of a burst in radio. In order to detect as many radio bursts as possible, dedicated instruments and tailored search algorithms are a fundamental asset. MWL observations of FRBs are indeed the main driver of this PhD Thesis. On the other hand, MWL campaigns strongly depend on the capability to detect bursts in the radio band, which can happen with the deployment of proper instruments and with the use of dedicated search algorithms. In view of that, the PhD work presented in this Thesis, revolves around the following three main themes: (i) the analysis and possible improvement of the FRB detection algorithms; (ii) the development of radio facilities tailored for the FRB observations, and lastly (iii) a series of large MWL campaigns targeted to some of the FRB sources

    Performance analysis of the Karhunen–Loève Transform for artificial and astrophysical transmissions: denoizing and detection

    Get PDF
    In this work, we propose a new method of computing the Karhunen–Loève Transform (KLT) applied to complex voltage data for the detection and noise level reduction in astronomical signals. We compared this method with the standard KLT techniques based on the Toeplitz correlation matrix and we conducted a performance analysis for the detection and extraction of astrophysical and artificial signals via Monte Carlo (MC) simulations. We applied our novel method to a real data study-case: the Voyager 1 telemetry signal. We evaluated the KLT performance in an astrophysical context: our technique provides a remarkable improvement in computation time and MC simulations show significant reconstruction results for signal-to-noise ratio (SNR) down to −10 dB and comparable results with standard signal detection techniques. The application to artificial signals, such as the Voyager 1 data, shows a notable gain in SNR after the KLT

    Performance analysis of the Karhunen–Loève Transform for artificial and astrophysical transmissions: denoizing and detection

    Get PDF
    In this work, we propose a new method of computing the Karhunen–Loève Transform (KLT) applied to complex voltage data for the detection and noise level reduction in astronomical signals. We compared this method with the standard KLT techniques based on the Toeplitz correlation matrix and we conducted a performance analysis for the detection and extraction of astrophysical and artificial signals via Monte Carlo (MC) simulations. We applied our novel method to a real data study-case: the Voyager 1 telemetry signal. We evaluated the KLT performance in an astrophysical context: our technique provides a remarkable improvement in computation time and MC simulations show significant reconstruction results for signal-to-noise ratio (SNR) down to −10 dB and comparable results with standard signal detection techniques. The application to artificial signals, such as the Voyager 1 data, shows a notable gain in SNR after the KLT

    A comparison among bio-derived acids as selective eco-friendly leaching agents for cobalt: the case study of hard-metal waste enhancement

    Get PDF
    Peculiar chemical, mechanical, and magnetic properties make cobalt a key metal for a variety of “hot” applications like the cathode production of Li-ion batteries. Cobalt is also the preferred metallic binder for tungsten carbide tool manufacturing. The recent increasing criticality of cobalt and tungsten is driving the interest of manufacturers and researchers toward high-rate recycling of hard-metal (HM) waste for limiting the demand for raw materials. A simple and environmentally friendly hydrometallurgical route for Co-selective dissolution from HM wastes was developed by using weak, bio-derived, and biodegradable organic acids (OAs). In this study, OAs, namely, acetic (HAc), citric (H3Cit), maleic (H2Mal), lactic (HLac), succinic (H2Suc), lactobionic (HLB), and itaconic (H2It) acids, were selected for their pKa1 values spanning from 1.8 to 4.7 and systematically tested as selective cobalt leaching agents from WC-Co-based wastes in water, isolating the formed complexes in the solid state. Thereby, all of them seemed to be efficient in selective Co leaching, achieving almost quantitative Co dissolution from HM by-products still at low concentration levels and room conditions in a short time, leaving the residual WC unreacted and ready to be re-employed for industrial purposes. Nevertheless, two main categories of organic acids were distinguished depending on their oxidizing/complexing behavior: class 1 OAs, where the metal oxidation is carried out by H+, and class 2 OAs, where oxidation is carried out by an external oxidant like O2. A combined experimental/theoretical investigation is described here to show the reasons behind this peculiar behavior and lay the foundation for a wider discussion on the leaching capabilities of OAs toward elemental metals. Due to the demonstrated effectiveness, low cost, eco-friendliness, and large availability through biotechnological fermentative processes, particular attention is devoted here to the use of HLac in hydrometallurgy as an example of class 2 OA. WC-Co materials recovered by HLac mild hydrometallurgy demonstrated a metallurgical quality suitable for re-employment in the HM manufacturing process

    The Northern Cross Fast Radio Burst project -- III. The FRB-magnetar connection in a sample of nearby galaxies

    Full text link
    Fast radio bursts (FRBs) are millisecond radio transients observed at cosmological distances. The nature of their progenitors is still a matter of debate, although magnetars are invoked by most models. The proposed FRB-magnetar connection was strengthened by the discovery of an FRB-like event from the Galactic magnetar SGR J1935+2154. In this work, we aim to investigate how prevalent magnetars such as SGR J1935+2154 are within FRB progenitors. We carried out an FRB search in a sample of seven nearby (< 12 Mpc) galaxies with the Northern Cross radio telescope for a total of 692 h. We detected one 1.8 ms burst in the direction of M101 with a fluence of 58±558 \pm 5 Jy ms. Its dispersion measure of 303 pc cm3^{-3} places it most-likely beyond M101. Considering that no significant detection comes indisputably from the selected galaxies, we place a 38 yr1^{-1} upper limit on the total burst rate (i.e. including the whole sample) at the 95\% confidence level. This upper limit constrains the event rate per magnetar λmag<0.42\lambda_{\rm mag} < 0.42 magnetar1^{-1} yr1^{-1} or, if combined with literature observations of a similar sample of nearby galaxies, it yields a joint constraint of λmag<0.25\lambda_{\rm mag} < 0.25 magnetar1^{-1} yr1^{-1}. We also provide the first constraints on the expected rate of FRBs hypothetically originating from ultraluminous X-ray (ULX) sources, since some of the galaxies observed during our observational campaign host confirmed ULXs. We obtain <13< 13 yr1^{-1} per ULX for the total sample of galaxies observed. Our results indicate that bursts with energies E>1034E>10^{34} erg from magnetars like SGR J1935+2154 appear more rarely compared to previous observations and further disfavour them as unique progenitors for the cosmological FRB population, leaving more space open to the contribution from a population of more exotic magnetars, not born via core-collapsed supernovae.Comment: 9 pages, 4 figures, published in A&
    corecore