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ABSTRACT

In this work, we propose a new method of computing the Karhunen-Loeve Transform (KLT)
applied to complex voltage data for the detection and noise level reduction in astronomical
signals. We compared this method with the standard KLT techniques based on the Toeplitz
correlation matrix and we conducted a performance analysis for the detection and extraction
of astrophysical and artificial signals via Monte Carlo (MC) simulations. We applied our
novel method to a real data study-case: the Voyager 1 telemetry signal. We evaluated the KLT
performance in an astrophysical context: our technique provides a remarkable improvement
in computation time and MC simulations show significant reconstruction results for signal-
to-noise ratio (SNR) down to —10 dB and comparable results with standard signal detection
techniques. The application to artificial signals, such as the Voyager 1 data, shows a notable

gain in SNR after the KLT.
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1 INTRODUCTION

The possibility of using the Karhunen—Loeve Transform (KLT;
Karhunen 1947; Loeve 1978) in order to recover a signal of interest
(SOI) buried in noise was proposed during the 1980s by Biraud
(1983), and was further explored by Maccone (d’ Amico & Mazzetti
2012) and Dixon (Dixon & Klein 1993) in the context of the Search
for Extra-Terrestrial Intelligence (SETI). More recently, the KLT
has triggered the renovated interest in the astronomical community,
since it has proved to be particularly effective in areas such as
the cosmic microwave background power spectrum estimation
(Gjerlgw et al. 2015), the filtering out of 21 cm fluctuations (Shaw
et al. 2015), astronomical imaging (Lauer 2002; Shaw et al. 2014),
cosmological parameter extraction (Pope et al. 2004), as well as
spectra classification (Connolly & Szalay 1999). The KLT technique
involves the decomposition of a stochastic process in a Hilbert
space using orthonormal functions, which can in principle have
any shape, unlike Fourier or Wavelet bases. It is also known as

* E-mail: trudumatteo @outlook.com

© 2020 The Author(s)

the principal component analysis (PCA) in the finite dimensional
case. The KLT statistically adapts to the data in order to extract
an embedded pattern, by maximizing the data covariance. For
this reason the KLT is, at least in principle, an ideal operator for
performing blind adaptive filtering, and offers a better separation
between the deterministic components within the received signals
and the stochastic ones.

The aim of this work is to study the applicability and detection
and extraction performance of the KLT in the interstellar telecom-
munication and astronomical context, and introduce a new method
which permits a fast implementation of the KLT based on a variant
of the autocovariance matrix.

The paper is organized as follows. In Section 2, we introduce
the artificial and astrophysical SOIs used in this analysis and we
discuss their standard detection techniques. In Section 3, we discuss
the main mathematical equations for the KLT techniques used in
this paper. In Section 4, we show the reconstruction results of the
KLTs for artificial signals. In Section 5, we discuss the Monte Carlo
(MC) simulations for both denoizing and detection. In Section 6, we
present our results for Voyager 1 data. In Section 7, we summarize
our main results and conclude.
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2 SIGNALS OF INTEREST

2.1 Astrophysical signals

Most astrophysical emissions present sparsity either in the spectral,
temporal, or spatial domains, or in a combination of those. This
analysis focuses on single receiver radio astronomy instruments
that deliver a single spatial sampling of the electromagnetic field
in any given sky direction. Therefore, only spectral and temporal
energy sparsity are considered. Hereafter, we describe the sample
of SOIs that we analysed and the standard techniques used for their
detection.

2.1.1 Spectral lines

Spectral sparsity is a feature of spectral line emissions, generated
within molecular clouds and gases across the universe, and origi-
nating from molecular recombinations or atomic radiative transfers
(Ewen & Purcell 1951). The proposed model for such a signal
consists in the convolution between a stationary white Gaussian
noise and a narrow bandpass filter

sline(t) =h(t)®x(t), (1)

where x(t) ~ NC(u = 0, axz) is the realization of a complex white
Gaussian noise with mean p = 0 and variance oxz at time ¢, h(¢) is
the (finite) impulse response of a narrow bandpass filter describing
a Gaussian bell curve in the frequency domain, and & stands for the
convolution operator.

2.1.2 Astrophysical transients

The term ‘transients’ in astrophysics refers to wide-band and
temporally sparse bursts of energy. These pulses are either unique or
repetitive, such as fast radio bursts (Lorimer et al. 2007; Spitler et al.
2014), or even periodic like pulsars (Lorimer & Kramer 2004). Their
emissions experience a hyperbolic dispersion in the time-frequency
domain due to their propagation in the interstellar medium (ISM).
Single pulses are modelled as an amplitude modulated, complex
white Gaussian noise that is associated with a frequency-dependent
time delay following an ISM dispersion measure (DM), as follows:

Spuise (1) = a(t) x x(t) ® d(1), (@)

where a(f) is a temporal envelope describing a Gaussian Bell
curve envelope in the time domain, and x(¢) ~ NC(u = 0, af).

d@) = F~! {exp(—%‘iz“;?ﬂ)} models the influence at frequency

f — relatively to the central frequency f; of the observed data — of
the ISM on the transient emission, 7~ '{.} is the inverse Fourier
transform, j = /—1, kpy; = 2.41 x 10~*s MHZ? is a constant of
proportionality, and DM is the transient DM.

Additionally, the ISM affects the distribution of energy across
frequencies of the received transient through scintillation. This
effect is neglected in this work, since we are assuming a narrow
enough processed bandwidth.

2.1.3 Narrowband frequency-drifting transmissions

A common target signal in the Search for Extra-Terrestrial In-
telligence (SETI) is an engineered pure sine wave transmitted as
a signalling beacon from a potential technologically advanced,
non-terrestrial civilization. This signal type presents the advantage
of maximizing the detection potential in the Fourier domain and
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minimizing the impact of the ISM in the transmission. Accounting
for the Doppler drift due to the dynamical environment of the Earth
(Earth rotation, orbit, solar orbit in the galaxy, etc...), such a signal is
modelled as a linear chirp on the receiver side of the communication
channel:

snfa(f) = A - exp (j27T (fo + gf) 1) ; (3)

where A is an amplitude factor (assumed constant over short periods
of time), fy is the intrinsic transmission signal frequency, and k
is the frequency drift rate embedding the Doppler effect of the
transmission as perceived from Earth.

2.1.4 Binary phase-shift keying transmission

An information-bearing transmission is often regarded as a possible
SETI target. A commonly used modulation scheme for terrestrial
transmissions is binary phased-shift keying (BPSK), expressed as

Sopsk (1) = A - m(t) - exp (j27 fot )., )
where m(t) = ,:rfioo €[k]o[t — k - Tg] ® hyy(¢) is a message sig-

nal, e[k] = %1, Ty isabit period, i (¢) is a pulse shaping window of
length T, §[¢] is the Dirac delta function, A is a constant amplitude
factor, and fj is the central frequency of the transmission.

2.2 Signal detection in astronomy and SETI

Modern observatories run specialized detection pipelines when
looking for particular signal types. This section briefly describes the
classic detection pipelines employed to detect the various signals
presented in Section 2.

2.2.1 Spectral line detection

Spectral lines are detected using standard spectroscopic methods
that involve the production of power spectra with ideally matching
frequency resolution to the spectral line width (*100s of kHz
frequency resolution), and threshold excesses of energy at given
frequency bins (see Koribalski 2012, and references therein). Power
spectral density (PSD) estimation requires time integration, usually
of the order of seconds to minutes, to reach the appropriate
sensitivity to detect faint spectral lines. The sensitivity of a radio
telescope to spectral line detection follows the radiometer equation
defined as

Pt Af) = Do SRS ®)
Tsystcm

where p(t, Af) is the apparent signal-to-noise ratio (SNR) of a given
source in the field of view of the telescope after a time integration t
(in s) and over a frequency bandwidth Af(in Hz), Tource 1S the source
brightness temperature (in K), and Tygem is the system temperature
(in K). This equation assumes a unit gain in the direction of the
astronomical source.

2.2.2 Astrophysical transient detection

The sparsity in time of astrophysical transients prevents the uti-
lization of spectroscopic methods and long time integrations for
improving the SNR of the emission. The common approach for
detecting such signals involves a match-filtering process known
as de-dispersion, and integration over large frequency bandwidths.
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The de-dispersion process consists in cancelling the effect of ISM
dispersion by aligning the transient emission in time. This procedure
requires the knowledge of the transient’s DM; blind transient
searches usually involve multiple de-dedispersion trials over a given
range of DMs. Two types of de-dispersion are employed:

(1) Incoherent de-dispersion: the telescope data are channelized
and spectra are produced at regular time periods (typically every few
ms). Incoherent de-dispersion consists in aligning each frequency
bin according to a given DM.

(ii) Coherent de-dispersion: incoherent de-dispersion assumes
that the SNR of the transient emission is sufficiently high in each
frequency channel to enable a confident detection after averaging all
channels together. Signal smearing is however experienced over the
individual channels, and can be detrimental to the detection when
either the individual channel bandwidths are large, the DM is large,
or the observation is conducted at low frequencies. In that case,
coherent de-dispersion consists in cancelling the ISM response on
the voltage data by applying the appropriate phase inversion for a
given DM.

For periodic transients (pulsars), unless they are particularly bright,
this approach has to be complemented by ‘folding’ the de-dispersed
transient profile, i.e. averaging time windows of the de-dispersed
data. This technique also requires the knowledge of the transient’s
period; otherwise a search has to be performed like in the case of
DM.

2.2.3 Narrow band extraterrestrial transmission detection

Similarly to spectral line detection, the search for narrow band
emissions aims at detecting sparse excesses of energy in the
frequency domain. The frequency resolution of typical narrow
band SETI searches is much higher (*1 Hz resolution) than the
one for astrophysical spectral lines to match the narrow frequency
bandwidths of these transmissions. The classic Fourier transform
acts as a matched filter for pure sine waves.

A frequency drift search for such transmissions is usually
employed to cancel the Doppler effect experienced by a potential
transmission (mostly due to the Earth’s rotation, typically up to
a few Hzs™'), and therefore improve the detection performance
after time integration. The detection sensitivity also follows the
radiometer equation (5).

3 THE KARHUNEN-LOEVE TRANSFORM

3.1 Mathematical formulation

Considering a complex valued stochastic process X(#) where ¢ €
[0, T, the KLT of X(z) consists in the following series expansion
(Maccone 2012):

+o00
X(0) =Y tu(®) + p(1), (6)
m=0
where u(t) = E[X(¢)] and E[.] is the expectation value operator, ¢,
are statistically independent complex random variables, and ¢,,(f)
are complex basis functions, the eigenfunctions of the operator R(z,
s) defined as the autocovariance operator of X(7)

R(t, 5) = E[(X (1) — m(®))(X(s) — pu(s)], @)

where (.)* stands for the complex conjugate operation. The expan-
sion coefficients ¢,, are obtained by projecting the process X(r) —
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() over the corresponding eigenfunction ¢,,(?), as

T
Cm =/ (X (@) = (1), (1)dr. ®)
0

The eigenfunctions ¢,,(f) obey the equation (Maccone 2012)

T
/ R, $)m($)ds = Amybu(D), ©
0

where A, are the eigenvalues of the operator R(f, 5). R(t, s) acts
as the kernel of the integral equation (9). The eigenfunctions ¢,,(f)
will form a complete orthonormal set in the Hilbert space.

From definition (7), R(#, s) is a Hermitian operator and therefore
its eigenvalues A, are always real. By combining equations (7)—
(9), we obtain E[Z,¢;] = Awm)Omn (Where 8, is the Kronecker
symbol) which ensures that the eigenvalues are also always positive.
From Mercer’s theorem (Mercer 1909) the sum of all eigenvalues
converges to the total variance o2 of the stochastic process

T oo
o’ =/ o (Odt = A, (10)
0 m=0

where o2 (¢) is the variance of the process at the fixed time f computed
according to (7) with ¢+ = s. Since series (10) is convergent, the
eigenvalues can be arranged in decreasing order A« > Ay > ...0
and, therefore, there is a finite number of linearly independent
eigenfunctions for each eigenvalue.

The sequence of the eigenvalues sorted in decreasing order is
commonly referred to as the eigenspectrum and it plays a key role
for the KLT when used as a noise filter (Maccone 2010).

No generic analytical closed-form expression of (9) exists
(though see El Karoui 2008; Yao, Kammoun & Najim 2012, for
possible results). However, when the process is discretized, as in
the case of a digitized output signal of a radio receiver, equation (9)
will reduce to a linear system of equations.

3.2 Autocovariance operator

Considering a fixed time #; € [0, T], the variable X(;) = x; is
a random variable that is characterized by a probability density
function (PDF) p(x;, ;). The expectation value E[X(7;)] is

w(t) = = E[X(#)] = / x;p(x;, t;)dx;, (11)

Q(xi)

where Q(x;) denotes the probability space of the random variable
x;. Equation (11) defines a function of time that represents the
mean value of the random variable x; at each time #;. Similarly,
from Leon-Garcia (2008), the autocovariance operator R(z, s) for a
complex stochastic process is defined as

R(t,s) = // (xr — ) (x5 — o) p(xe, X, 1, $)dx,dxg,  (12)
Q(xy,x5)

where p(x;, x;, t, ) is the joint PDF of the random variables x, and
x; and Q(x;, x;) is the joint probability space of the two random
variables.

When a stochastic process is wide-sense stationary (WSS), that
is when it has a constant average () = m and its autocovariance is
dependent only on the time difference R(¢, s) = R(t — s), expression
(12) can be computed in the time domain by only considering a
single realization. In this case, the expectation operator is computed
in the following way:

1 T
m = ErIX(0)] = (XO)r = / X()dr. (13)
0
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If we define T =1 — s, expression (12) assumes the following form
for a WSS process

R(r) = Er[(X (1) = m)(X(t + 7) — m)"]. (14)

Equation (14) is commonly called the autocorrelation function. An
important property of (14) is that, for a zero mean signal, its average
total energy &£ corresponds to the autocorrelation function R(t = 0)
at zero time-lag

E=Er[X()’] = R(z =0). (15)

3.3 Estimators of the autocovariance operator

In the discrete case, the stochastic process X will in general be
characterized by two indices X = x,,;, where « labels the realization
of X we are considering, while i labels the specific time sample of
the realization we are considering.

Consider a discrete complex stochastic process X = x,; where «
=0,1,..,.M—1andi=0,1,..,N — 1. The unbiased estimator for
(12) is the sample covariance matrix (Mardia, Kent & Bibby 1979;
Chatfield & Collins 1981)

1 M—1 i}
Rj = C;(xm« — 1) (X — 1), (16)

where p; = E[x;] = - M X

A major limitation of this estimator arises in the case M < N,
leading to the singularity and non-invertibility of the matrix (Cai,
Liu & Luo 2011). The KLT based on the assumption that more
realizations of the process are available and that the KLT kernel
is computed according to (16), will be referred to as multiple
realizations KLT (MRKLT).

The proposed MRKLT extends the classic KLT (Dixon & Klein
1993; Maccone 2010) to the case where multiple independent
observations of the same signal set is available. In Section 4, we will
investigate the MRKLT under various signal scenarios. The single
realization (or observation) case will then be addressed under the
framework of the MRKLT, as discussed at the end of this section.

When the stochastic process is WSS, we can define the N-

dimensional vector R; (i = 0, 1, ..., N — 1) as an estimator for
(14):
N
Ri= Y (O —m)xig —m), (17
k=i+1
where m = ﬁ ,ivz_ol x¢. The autocovariance matrix Tj; (i, j = 1, 0,

... N — 1) for a WSS process depends only on the autocorrelation
vector (17), and it assumes the form of a Toeplitz matrix (Press et al.
1992; Dixon & Klein 1993)

1 r r r3 e FN—1
Vl 1 r r oo e PN
r r | T
T, = 2 1 1 N-3 | (18)
T R 1

where r; is the autocorrelation vector (17) normalized with respect

to the autocorrelation vector itself at time-lag zero
R;

=&

When no prior regarding the stationarity of the process is available,

expression (12) (more precisely its estimator 16) has to be used. This

(19)

ri
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fact constrains the applicability of the KLT, since not all processes
come in multiple realizations. In the case of raw voltage data,
equation (16) is not suitable since our input is an N-dimensional
complex vector.

In order to address the single realization case (e.g. signals), we
will follow two approaches. The first one is based on the assumption
that the signal is WSS, therefore equation (18) can be used for the
KLT kernel. This variant of the KLT will be referred to as Toeplitz
KLT (TKLT), and has been suggested to filter out classic SETI target
signals like sinewaves or chirps in noisy measurements (Dixon &
Klein 1993; Maccone 2010).

A novel approach based on MRKLT is proposed in this work,
as discussed earlier, extending the WSS assumption to periodic
signals. Suppose we have an N-dimensional complex vector x; i =
0, 1, ..., N — 1, which we split into several sub-vectors of length W.
We define W as KLT Window. The total number K of sub-vectors
contained in x; is

K = Floor (ﬁ) s (20)
w

where Floor(.) is the floor function. Our vector x; is now a K x W
matrix

X0 X o Xw—l

8 Xw Xw+1 o o0 Xow—1
vy = ) : i . , 210

‘XKW*W . .. e xka71

where, for the sake of clarity, the upper index is the row index and
the lower index is the column index. Similarly to (16), we can build
an autocovariance matrix ¥, (, m =0, 1, ..., W — 1) according to
the following expression:

K—1

1 *
S = ; (o —&) (vh— &) 22)

where we defined & = + ZS;OI v,ﬁ . We will call the KLT based on
this approach covariance KLT (CKLT). The idea behind CKLT is
that when the SOl is periodic, each sub-vector acts as a ‘realization’
for the matrix (22).

3.4 KLT for discrete processes

Once we have computed the autocovariance matrices, we can define
the KLT expansions. Equation (9) becomes a standard secular
equation for all of these approaches, and it allows us to compute the
eigenvalues and the eigenvectors of autocovariance matrices. For
MRKLT equation (9) becomes

N-1

Z Rij®jm = Aiybmi- (23)

j=0

If we compute the eigenbasis of R
assumes the form

;> the MRKLT for the process

N-1

iai = Z {am¢mi + Mis (24)
m=0

where
N-1

Lam = Y _(Xaj = 1)) (25)
=0

In the case of MRKLT, the M realizations of the stochastic process
X will share the same eigenbasis computed from matrix (16). Each

020z aunp | uo Jasn ABojouyoa] Jo aynsu| eluloed Aq Z8/+085/69/1/y61/1oBNSqe-ad1e/seluw/woo dno olwapese//:sdiy Woll papeojumoc]



MRKLT TKLT

KLT performance for astronomical signals 73

CKLT

INPUT
Matrix X (M x N, C)

INPUT

Vector X (1 xN, C)

INPUT
Vector X (1 xN, C)

U [l

I

Matrix R (N x N, C) Autocorrelation
Equation (16)

Equation (17)

Vector R (1 x N, C)

Vector Division in Matrix V
K Sub-Vectors each :> (K xW, C)
(I1xW,C) (Equation 21)

L iyl

Eigenbasis of R

U

AM(1IXxN,R),¢ (NxN,C) Equation (18)

Matrix T (N x N, C)

Eigenbasis of <::
b

e (1x W, R)

Matrix ¥ (W x W, C)

Equation (23) ﬂ

Equation (22)
f(WxW,C)

@ Eigenbasis of T

Expansion .
n Equation (26
Coefficients (26)

n(1XN,R),e(NxN,C)

Equation (29)

Expansion Coefficients

Q> d (KXW, C)

Z(MXN, C) Il

Equation (25)

@ c(1xN,C)

Expansion Coefficients

Equation (31)

Reconstructed Matrix V

(Kx W, C)
E Equation (30)

Equation (28)
ouTPUT
Reconstructed Matrix X @
(MxN, C) OUTPUT
Equation (24) Reconstructed Vector X
(1xN,C)
Equation (27)

ouTPUT
Reconstructed Vector X(1 x KW, C)
Equation (32)

Figure 1. Block diagram for the three presented KLTs. For each of them, we indicate the type of data considered and we show all the mathematical operations

(with reference equations) that are necessary in order to have the produced output.

realization will be reconstructed differently because they will have
different expansion coefficients computed using (25).
In the case of TKLT, equation (9) assumes the form:

N-1
Z Tijejm = niemi, (26)
=0

where 7;, e,,; are respectively the eigenvalues and the eigenvectors
of Tj;. The TKLT reconstructed vector is

N-1
%= cei+m, (27)
1=0
where
N-1
= Z(xj —m)e;. (28)
j=0
Lastly, for CKLT reconstruction equation (9) is
W1
Zij fim = &a)fmis (29)
j=0

where ¢;), f; are respectively the eigenvalues and the eigenvectors
of X;;. The CKLT reconstructed sub-vectors are

w—-1

o) = df fur, 30)
m=0

where
w—-1

=3 (=) i 31
j=0

The reconstructed initial vector X; is the rearrangement of the K
reconstructed sub-vectors ﬁf , that is:

- ~0 0«1 <1 K1 ~K—1
xl.:(vo’...7vwil’v0,...’vwil,...,v0 7...’1)‘)‘/,71). (32)

We point out that the reconstructed vector X; (32), as opposed to
the other KLTs, might have fewer samples than the original signal.
This is because of the way we build our input matrix (21) for the
CKLT, that is by dividing the initial signal into K sub-vectors. An
optimal KLT Window W is chosen such that the number of rejected
samples is not high, but also such that K < W to make sure that
matrix (22) is not singular, to prevent the loss of information due to
samples exclusion. Therefore if the initial signal has length N, the
KLT Window W should not be greater than \/N .

In Fig. 1, we show the block diagrams for the three types of
KLT discussed. For each of them we describe the type of input data
processed by the KLTs and what steps are necessary to produce the
output.

3.5 KLT for signal detection theory

We propose to use the KLT as a signal detector. The classical signal
detection problem can be formulated as a binary hypothesis testing
problem. Supposing we have a (1 x N) dimensional complex vector
x;, the two possible hypotheses Hy and H; are

_)n . [H()
Y= {S,‘ +n; |H1 ’ (33)

where in the first hypothesis, only the noise is present, while in the
second one, both SOI and noise are present. After computing the
KLT kernel according to (18) or (22) and its eigenspectrum, we
define the following quantity as a decision statistic parameter for
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the KLT:
Ao
A= 2O (34)
>k

According to the Random Matrix Theory (Tao 2012; Livan, Novaes
& Vivo 2017), the decision parameter (34) follows a Marchenko—
Pastur distribution (Marcenko & Pastur 1967; Pastur & Shcherbina
2011); if we consider W/K < 1, this distribution for A is well defined
(Marcenko & Pastur 1967).

In order to evaluate the KLT performance as a signal detector, we
will compare it with standard detectors as energy-based detectors,
fast Fourier transform (FFT) detectors, and more recent autocorrela-
tion detectors (Sharma & Wallace 2009; Wang et al. 2016) . Energy
detection is widely employed in signal processing for the detection
of unknown signals. Considering the discrete signal x;, the energy
detector is expressed as the total sum of the modulus square of its
samples

N—1
E=) |ul. (35)
i=0

The FFT detector is the maximum value of the PSD of x;
® = max(|F[x]), (36)

where F[x;] is the FFT of x;

= mi
Flxil = me exp (—ZJT]W) . 37

m=0

Lastly, the autocorrelation detector, follows a similar definition
proposed by Sharma & Wallace (2009)

A=Ry+ Ry, (38)

where Ry, R, are the autocorrelation vectors (17) computed respec-
tively at 0 and 1 sample time-lag.

3.6 KLT implementation

The KLT has the main disadvantage to possess a high computational
complexity, mainly do to the need to diagonalize the autocovariance
matrix in order to compute the eigenbasis. More details concerning
the KLT computational complexity are provided in Appendix. Fig. 2
shows a comparison in computation time between CKLT and TKLT
with their respective error bars. The y-axis is in logarithmic scale.
For both KLTs, we considered the same generated signal: a complex
sinewave plus complex white noise. For different signal lengths, we
performed 100 CKLTs and TKLTs. The KLT Window for CKLT
was selected at 1/10 of the number of samples considered. The
CKLT remarkably outperforms TKLT in computation time. In the
case of 2000 samples, we have a difference of three orders of mag-
nitude between the two algorithms. This is because, as we already
mentioned, the most computational heavy part of the algorithm
consists in the computation of the eigenbasis: the autocovariance of
the TKLT always needs the same length of the received signal, while
the autocovariance of the CKLT has the same length as the selected
KLT Window W. This is a huge advantage for CKLT, and can make
it a more suitable instrument for processing real data, which tends
to have a considerably high number of samples. This simulation
and the following ones were done using a Linux platform Ubuntu
18.04 running on a Intel® Core™ 17 i7-6700HQ, 4 x 2.60 GHz
CPU, RAM memory 16 GB DDR4.

MNRAS 494, 69-83 (2020)

KLT Computation Time (s) [logio scale]
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Figure 2. Computation time comparison between CKLT and TKLT. The
KLT Window W used for each number of samples is 1/10 of the number of
samples themselves.

4 INTERSTELLAR TELECOMMUNICATION
SIGNAL RECONSTRUCTIONS

4.1 MRKLT reconstruction

In order to understand how the different KLTs recover an SOI,
we consider interstellar telecommunication signals as a first test,
since it is simpler to understand their features. For the MRKLT, we
consider a sinewave with normalized frequency f; = 0.6f;, where
Js is the sampling frequency, and a linear chirp with normalized
starting frequency fy = 0.6f;, and normalized drift rate k£ = 0.2f;/N,
where N are the samples of the SOI.

The input for the MRKLT was a complex matrix xo; = Sgi + Hgi
with 10* x 103 entries. The matrix sg; is the matrix the considered
SOI, while n,; is a matrix that contains the noise. In each realization,
the phase of both sinewave and linear chirp was randomly generated
with a uniform distribution U/(0, 27r). The noise matrix contains
complex coloured noise generated using white noise convolved
with a Hanning window.

The SOIs are generated according to (3), where the sinewave is
the case with k = 0. The SNR is defined as the ratio between the
total energy of the SOI (which is 1 for the way we generate the SOI)
and the total energy of the noise.

Fig. 3 shows the MRKLT results for the sinewave and the
linear chirp. The plots on the left show the eigenspectrum of
the autocovariance matrix (16), while the plots on the right show
the PSD of the SOI and MRKLT reconstructed. The plots show
the results for one (randomly chosen) of the 10000 realizations
generated.

Both eigenspectra clearly show that there is only one dominant
eigenvalue, which advocate for the choice of only one expansion
term for the reconstruction. The PSDs of the MRKLT reconstructed
signal are good representations of the PSDs of both SOIs despite
the very low SNR level (—20 dB). There is a loss in reconstruc-
tion quality at high frequencies. This result is consistent with
the injected coloured noise, which has a frequency dependence.
MRKLT provides good reconstructions even for very low SNRs,
its drawback being that real data do not always come in multiple
realizations.
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Figure 3. MRKLT reconstruction for a sinewave and a linear chirp. The
total number of realizations is 10000. The figure shows the realization
number 3973 which was chosen randomly. SNR is —20 dB. Top-left panel:
eigenspectrum for the sinewave obtained with MRKLT. Top-right panel:
PSD of the received signal (blue); the original SOI (green) and the MRKLT
reconstructed (red). Bottom-left and bottom-right: the same as top-left and
top-right, respectively, for the chirp.

4.2 TKLT and CKLT reconstruction

We next consider the case where only a single realization is
available. We show the results for the TKLT and CKLT by again con-
sidering a sinewave and a linear chirp as described in Section 4.1. In
addition, we consider a complex BPSK with normalized frequency
Jfo = 0.6f;. In this case, our input is a complex vector x; = s; + n; of
N samples. The number of samples N is 10° for the TKLT, while,
for the CKLT, we consider N = 10* and W = 10% samples. The bit
period Ty of the BPSK is 10 samples for TKLT and 100 samples
for CKLT, in order to have the same relative length respect to the
length of the input vector. Coloured noise is added to the SOI, as in
the previous case.

Fig. 4 shows, on the left, the eigenspectra for the sinewave,
the chirp and the BPSK while on the right the compared PSDs
between the received signal, the SOI and the TKLT reconstructed.
For the sinewave, the eigenspectrum in Fig. 4 (top-left panel)
shows two dominant eigenvalues and therefore we considered two
coefficients in the expansion, for the reconstruction. Fig. 4 (top-
right panel) shows the PSD for the reconstructed signal. The TKLT
reconstructed PSD shows a peak in the same position as the SOI,
while the noise is notably reduced, showing that the TKLT filtered
the injected noise.

For the chirp, Fig. 4 (middle-left panel) shows that the eigen-
spectrum does not display a clear break: in this case, the TKLT
does not manage to separate the SOI space and the noise space.
Conservatively, we attempted reconstruction of the chirp using
only one eigenvalue (red line in Fig. 4, middle-right panel) and
10 eigenvalues (violet line in Fig. 4, middle-right panel). When
we consider only one eigenvalue, the reconstructed PSD shows
a single peak which is unrelated to the starting frequency of the
chirp. The PSD of the reconstructed signal, when considering 10
eigenvalues, shows several single peaks. There is a hint that only
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Figure 4. TKLT reconstruction for a sinewave, a linear chirp and a BPSK.
The SNR is —10 dB. Top-left panel: eigenspectrum for the sinewave
obtained with the TKLT. Top-right panel: PSD of the received signal (blue),
the original SOI (green), and the TKLT reconstructed (red). Middle-left
and middle-right: the same as top-left and top-right, respectively, for the
chirp. Bottom-left and bottom-right: the same as top-left and top-right,
respectively, for the BPSK.

some specific components are being reconstructed, using a base of
sinewaves. Further analysis will be needed in order to understand
how a number of significant eigenvalues can be extracted in cases
like this.

Analogously to the chirp, the eigenspectrum of the BPSK
corrupted by the noise does not show a clear separation (Fig. 4,
bottom-left panel) and the PSD of the reconstructed signal with 10
eigenvalues (Fig. 4, bottom-right panel) shows several single peaks.

Fig. 5 shows the corresponding results for CKLT. For the
sinewave and the chirp, neither eigenspectrum shows a break, hence
the CKLT does not achieve a separation between signal and noise
subspaces. Using only one eigenvalue for each SOI, the CKLT is
able to find the correct position of the peak for the sinewave, despite
a more noisy reconstruction compared to the TKLT. For the chirp,
even when considering only one eigenvalue, the reconstructed signal
does not show any feature of the SOI, and it contains a significant
amount of noise. In the BPSK case, as shown in Fig. 5 (bottom-
left panel), the eigenspectrum possesses a significantly dominant
eigenvalue with respect to the others. As opposed to the previous
two cases, the PSD of the signal reconstructed by the CKLT (Fig. 5,
bottom-right panel) is described similar to the PSD of the SOI
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Figure 5. CKLT reconstruction for a sinewave, a linear chirp and a BPSK.
The SNR is —10 dB. Top-left panel: eigenspectrum for the sinewave
obtained with the CKLT. Top-right panel: PSD of the received signal (blue),
the original SOI (green), and the CKLT reconstructed (red). Middle-left
and middle-right: the same as top-left and top-right, respectively, for the
chirp. Bottom-left and bottom-right: the same as top-left and top-right,
respectively, for the BPSK.

There is a considerable discrepancy between the SOI and the CKLT
reconstructed in the frequency range of (—0.2, 0.2)f; this is due
to the noise colouration, as already mentioned for the MRKLT
reconstruction.

In Figs 6 and 7, the black dots represent the eigenspectra for
each SOI, computed using the TKLT and the CKLT, respectively.
The plots on the left show the case of the SOI without noise; the
plots on the right show the case of the SOI buried in coloured noise
with SNR = —10 dB. The blue lines in the same plots represent the
mean square errors (MSE) between the SOI s; and the reconstructed
signal &;:

1 N—1 5
MSE = N;'” — %2 (39)

MSE were computed by varying the number of eigenvalues for each
point, starting from 1 to N for the TKLT and from 1 to W for the
CKLT. For the TKLT, we considered an input vector of N = 103
samples, while for the CKLT we considered an input vector with N
= 10* samples and a KLT Window with W = 10% samples.

In the case of the TKLT, when the SOIs are not corrupted by the
noise, only the eigenspectra of the sinewave and the chirp show a
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Figure 6. Eigenspectrum (left y-axis) and MSE (right y-axis) as a function
of the number of eigenvalues used for the TKLT reconstruction for different
SOIs. (Top, middle, bottom)-left panels represent the noiseless case; (top,
middle, bottom)-right panels represent the SOI buried in coloured noise with
an SNR of —10 dB.

trend separating the signal sub-space from the noise sub-space. As
already noticed, for the sinewave, only two eigenvalues are domi-
nant. For the chirp, a change of slope followed by a concavity seems
to delimit the signal space. The number of meaningful eigenvalues is
200, which is exactly the length of the TKLT eigenspectrum times
the considered chirp drift rate. Lastly, the eigenspectrum of the
BPSK shows a monotone decreasing behaviour with no particular
feature.

The MSE curves of the three SOIs behave similarly to the
eigenspectra. In the sine case, when considering two eigenvalues,
the MSE rapidly converges to zero: the first two coefficients of
the expansion are enough to reconstruct the SOI. For the chirp,
the MSE consistently reaches zero near the second point where
the eigenspectrum changes slope. When the SOIs are corrupted
by the noise, only the sinewave eigenspectrum maintains the same
appearance as the noiseless case. The other two eigenspectra are
very similar to each other, suggesting that the TKLT did not manage
to filter the noise out. The MSE curves correctly grow when we
consider more eigenvalues and they all saturate at 10. This result is
consistent since it corresponds to the variance of the noise for an
SNR = —10 dB.

In the case of the CKLT, when the SOIs are not corrupted by the
noise, the sinewave eigenspectrum has only one dominant eigen-
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Figure 7. Eigenspectrum (left y-axis) and MSE (right y-axis) as a function
of the number of eigenvalues used for the CKLT reconstruction for different
SOIs. (Top, middle, bottom)-left panels represent the noiseless case; (top,
middle, bottom)-right panels represent the SOI buried in coloured noise with
an SNR of —10 dB.

value (as opposed to the two dominant in the TKLT) and a cluster of
sub-dominant eigenvalues appears. The chirp eigenspectrum shows
similar features to the one reconstructed by the TKLT. Also in this
case, the number of meaningful eigenvalues corresponds to the chirp
drift rate times the length of the eigenspectrum considered, which is
the length of the KLT Window for the CKLT. Contrary to the TKLT
case, the meaningful eigenvalues remain constant in value and there
is no change in slope. The BPSK eigenspectrum shows only one
significant eigenvalue and all the remaining eigenvalues converge
rapidly to zero. All the MSE curves correctly decrease considering
more eigenvalues.

When the SOIs are corrupted by noise only the BPSK eigen-
spectrum shows a clear sub-space division. The sinewave and chirp
eigenspectra are very similar to the ones obtained using the TKLT.
As for the TKLT, also the CKLT MSE curves increase considering
more eigenvalues and saturate at the value corresponding to the
variance of the noise.

5 MONTE CARLO SIMULATIONS FOR CKLT

Given the computation time results summarized in Fig. 2, we
chose the CKLT as the most suitable algorithm to perform MC
simulations for the evaluation of both reconstruction and detection

KLT performance for astronomical signals 77

performance for each SOL. In the next two sections, we will discuss
reconstruction and detection separately. We will present the different
setups for the simulations, the metrics used in order to evaluate
CKLT performance and the obtained results.

For our simulations, we considered five SOIs: a sinewave, a linear
chirp, and a BPSK as models for typical interstellar telecommuni-
cation signals; a synthetic spectral line and a synthetic pulsar as
models for signals of astrophysical origin. In the MC simulation,
some parameters were randomly generated at each MC trial. For
other parameters some discrete values were selected to evaluate the
MC outcome based on their variation. The parameters selected for
the MC simulations were:

(i) SNR. This parameter is used to deduce the level of SNR
required to start to recover the SOIs buried in noise for the case of
reconstruction. It is also an indicator of when CKLT starts to be a
good detector, in the case of detection.

(i) Length of the KLT window. This parameter plays a key
role in CKLT. The size of the covariance matrix computed and
its consequential eigenspectrum depends on it. The simulation
of several KLT windows values should prompt the optimal KLT
window length for each case, which may vary with the SOI type.

The parameters randomly generated for each SOI were:

(i) Sinewave. A normalized frequency is generated with uniform
probability distribution 2/(0, 1) f, while the phase is generated with
a uniform probability distribution 2/(0, 27).

(i) Linear chirp. The distributions of the normalized starting
frequency and the phase are the same used for the sinewave, the
drift rate is generated with a uniform distribution ¢(0, 1) f;/N.

(iii) Synthetic pulsar. Randomness is ensured by generating the
complex white noise used to build the SOI in each trial, and by
considering, for each single pulse, a different amplitude with normal
distribution A/ (1, 0.5).

(iv) BPSK. The parameters were uniformly distributed like in the
sinewave, for the sinewave transmission signal, while the bits for
the message signal were generated by randomly choosing between
—1 and +1 (with probability p = 0.5 each).

(v) Synthetic spectral line: the randomness of the experiment
was ensured with the complex white noise used to generate the SOI
itself.

In both MC simulations, the input vector was a complex vector
of 10* samples. The length of the filter window used to generate
the synthetic spectral line and the bit-period for the BPSK were
both 10? samples. The synthetic pulsar signal consists in 10> pulses
of 10% samples each. The noise considered is the coloured noise
described in Section 4.1.

5.1 Reconstruction

For this analysis, we used the MSE between the SOI and the
CKLT reconstructed signal as a metric and we studied how the
MSE changes as a function of the SNR and of the KLT Window.
We performed 103 trials for the MC simulation. Here, we follow
the most conservative approach by considering the first dominant
eigenvalue for the expansion as we lack an a priori closed-form
expression to identify the meaningful number of eigenvalues which
define a specific SOL

Fig. 8 shows the results for the reconstruction. The radar charts
show that, when the SNR increases, the MSE consistently decreases.
The associated error decreases as well, as the initial input becomes
more deterministic. It is apparent that the MSE is not influenced
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Figure 9. AUC as a function of the SNR of the ROC curves for the CKLT
detector (top-left panel), the FFT detector (top-right panel), the energy
detector (bottom-left panel), and the autocorrelation detector (bottom-right
panel).

by the type of SOI considered. The fact that there is no significant
dependence on the SOl is due to the presence of the noise as we can
see from Fig. 8 (top panel) where SNR = —20 dB. Only the BPSK
case, down to SNR = —10 dB, shows a consistent difference from
the other SOlIs, in particular when we consider a KLT window of
200 or 400 samples. This means that the BPSK is more sensitive to
the choice of the KLT window. In fact, as opposed to the sinwave,
the BPSK also contains the message signal and we cannot consider
KLT windows longer than the bit period.

In general, there is a clear dependence on the choice of the KLT
window. The MSE reaches a minimum value at 100 samples: this
value is the square root of the length of the input vector. This, in
turn, means that, when the noise is the dominant term, the optimal
choice is to consider K = W. When noise and SOI are comparable in
power the dependence on the KLT window is less significant except
for the case of the BSPK, as we already discussed.

5.2 Detection

For the detection analysis the MC outcomes in both hypotheses were
the decision parameters from equations (34), (35), (38), and (37).
Because of the low computational burden, the number of trials was
10*. Since we are particularly interested in detection at low SNR,
for this simulation we considered only the optimal KLT window of
100 samples, as reconstruction MC simulations suggested. In order
to compare the four detectors, we evaluated the area under curve
(AUC) of the receiver operating characteristic (ROC; Schreier &
Scharf 2010) curves for the detectors at various SNR. The ROC
curves are generated by calculating the detection probability Py and
the false alarm probability Pr, which are obtained by integrating the
MC outcome histograms binned with 10* bins.

Fig. 9 shows the AUC of the ROC curves as a function of
increasing SNR for the four detectors we considered. For the
sinewave, all the detectors work well at SNRs whitin —16 dB, while
for very low SNRs only the FFT detector does not lose performance
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Figure 10. CKLT eigenspectra for Voyager 1 data at different KLT
Windows: 256 samples (left-hand panel), 1024 samples (central panel),
and 4096 samples (right-hand panel).

power (Fig. 9, top-right panel). This result is expected, since the best
eigenbases for a monochromatic signal are sines and cosines. For
the linear chirp, the detector based on the autocorrelation (Fig. 9,
bottom-right panel) is the most efficient at low SNR, and all the
four detectors start to perform equally from SNR = —5 dB. The
BPSK case shows analogous results to the sinewave except at low
SNR where the CKLT performs best (Fig. 9, top-left panel). In the
case of the synthetic pulsar, only the energy and autocorrelation
detectors can discriminate the SOI at positive SNR, and none of
them can when it is negative. Similarly to the pulsar case, also for
the spectral line no detector is efficient at low SNR. Also in this
case only the energy and autocorrelation detectors begin to detect
the SOI starting from SNR = —5 dB. Conversely, when the SNR is
positive all the detectors have good performance.

6 REAL DATA: VOYAGER 1

We performed CKLT analysis of the Voyager 1 (Ludwig & Taylor
2016) telemetry signal collected by the Breakthrough Listen group
(UC Berkeley) with the Green Bank Telescope. The Voyager 1
telemetry signal consists in general into a bi-phase modulation
BPSK where the central carrier is emitted by the spacecraft a
8415 MHz. This value does not consider the Doppler shift due to
the relative motion between the telescope and Voyager 1. The sub-
carrier is, in turn, modulated to carry individual phase shifts that
are designed to represent groups of binary 1 and 0s. The received
signal is a complex vector of 22* samples.

Fig. 10 shows three eigenspectra computed using different KLT
windows. Fig. 10 (right-hand panel) shows that the noise component
starts to dominate for larger samples (4096 samples are exactly the
square root of the length of the signal). Fig. 10 (left-hand panel)
shows that the sub-dominant components are very close in value to
the dominant ones for lower samples. Only the eigenspectrum in
Fig. 10 (central panel) shows a clear division between the SOI and
noise sub-spaces. In this case, there is a single dominant eigenvalue
and a cluster of eight sub-dominant eigenvalues. After this cluster,
the eigenspectrum decreases constantly and it rapidly converges
to zero at approximately 80 per cent of the KLT window. This
behaviour is similar to the case shown in Fig. 10 (left-hand panel).
It is not clear why this happens, and it will be the subject of further
studies. The Voyager 1 study-case shows that it is very hard to
interpret the eigenspectra and have a complete understanding of
all the meaningful eigenvalues. Furthermore, at odds with the MC
reconstruction results, the Voyager 1 signal shows that the optimal
KLT Window is not necessarily the square root of the total length
of the signal. We point out that, because of the high computation
burden of our MC simulations, it was not possible to explore the
high number of samples needed to investigate long signals as this.

Fig. 11 shows the comparison between the received and CKLT
reconstructed average PSDs computed with a resolution of 1024
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Figure 11. CKLT reconstruction for Voyager 1 data using a KLT window
of 1024 samples considering different eigenvalues: 1 eigenvalue (top panel),
3 eigenvalues (middle panel), and 9 eigenvalues (bottom panel).
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samples. When we consider only one eigenvalue (Fig. 11, top
panel), the CKLT PSD shows only the main carrier, though with
a considerable power enhancement relative to the PSD of the
received data. In order to see the sub-carriers we need at least
three eigenvalues (Fig. 11, middle panel). Finally, when we select
the dominant eigenvalue plus the cluster of eight we reconstruct the
PSD with the minimum amount of noise (Fig. 11, bottom panel).
In this case, the gain in power is approximately 25 dB for the main
carrier and the sub-carriers.

7 CONCLUSIONS

In this work, we have presented the use of the KLT as a noise
filter for signal processing in astronomy. As a first approach,
we developed a KLT based on multiple realizations of the same
signal (MRKLT), which was extremely successful in reconstructing
all the examined SOIs down to low SNR (—20 dB). While this
method shows promising results, it is not suitable for single-
receiver radio-telescopes providing a unique signal realization
at a time. Phased array radio-telescopes, however, do provide
multiple realizations of the same signal and could, as such, take
advantage of the MRKLT for signal denoizing and recovery. This
application falls outside the scope of this paper and has not been
addressed.

We then compared standard KLT techniques based on the
Toeplitz matrix (TKLT; Dixon & Klein 1993; Maccone 2010)
for the KLT kernel with a new method (CKLT), which provides
a significant improvement in computation time. Both techniques
show good performance for narrow band signals, while they show
limitations for wide band signals, as highlighted by the case of
the linear chirp. For SOIs of this kind, further studies are needed
in order to identify a closed-form expression for the choice of a
meaningful number of eigenvalues. We considered several models
for typical astrophysical and interstellar-telecommunication SOlIs,
and performed an MC analysis for the CKLT in order to study
its reconstruction and detection performance. SOI reconstruction
simulations show good results starting from as low as SNR =
—10 dB. SOI detection simulations, on the other hand, show
comparable results with standard detection techniques. Finally,
we provided a real data application by reconstructing the Voy-
ager 1 telemetry signal. The signal displays a significant gain in
power after the CKLT application on the collected data. These
first promising results obtained with Voyager 1 suggest that the
KLT might be an extremely powerful instrument for interstellar
telecommunication. For astrophysical signals such as spectral lines,
or transients (like pulsars or FRBs) the KLT applied to single
complex voltage data do not appear as a viable substitute for most
commonly used detectors, since priors regarding the SOI are rarely
available.
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APPENDIX A: MATRIX DIAGONALIZATION

In the most general case, the KLT has a major drawback: it demands
for high computational power. This is mainly due to the operation
of diagonalizing the autocovariance matrix. We will here attempt to
assess the number of operations required to diagonalize a matrix.
We will limit our analysis to multiplications, exponents, divisions,
and square roots operations, and will not consider the additions as
they are negligible in terms of computational requirements. Math-
ematically, given the computational complexity of a multiplication
M(n), and the computational complexity of an addition D(n), n being
an arbitrary platform bit depth, then D(n) = o(M(n)).

The other operations (exponent, division, and square root) have
computational complexity comparable to the multiplication; if we,
for instance, use Newton’s algorithm (Flynn 1970), their complexity
C(n) = O(M(n)), that is a positive real number k and a real value x
exist such that |C(n)| < kM(n) for all xo > n.

We start from the general case of an autocovariance matrix given
by (16). This matrix is Hermitian. According to the Jacobi algorithm
(Golub & Van Loan 1996) (see pseudocode in algorithm 1), given
the Hermitian N-square matrix A, all the off-diagonal elements must
be reduced to zero by means of appropriate matrix rotations. In the
algorithm 1, a loop is iterated on all the (N> — N)/2 upper off-
diagonal elements (the lower ones are obtained using symmetry
properties). Another algorithm is nested and is the Schur algorithm
2. In the Schur algorithm (called within the Jacobi algorithm), a
division is carried on (to calculate 7) plus (in the if condition)
a division, a square root and an exponent, for a total of four
operations. The Schur algorithm returns an N x N rotation matrix
that is O everywhere but the diagonal elements and, in particular,
the following elements:

) Jp,p,0)=J(q,q,0)=c

(i) J(p, g, 0) = s
(iii) J(p. ¢, 0) = 5*

Algorithm 1 Jacobi Algorithm
procedure (Jacobi Algorithm)
forp=1:n-1
fore =p+1:n-1
(c, s) = sym.schur2(A, p, q)
A=J(p,q.0)"AJ(p,q,0)
V=VJ(p,q.0)
end
end
end procedure

Once the J matrix is returned, the autocovariance matrix A and
the eigenvector matrix V can be updated by means of 6N and 3N
operations, respectively, if the symmetry is exploited. In the end,
(4 4+ 6N + 3N) operations are repeated (N> — N) times. Therefore
the computational complexity of the diagonalization is O(N?). The
Jacobi algorithm holds true for Hermitian matrices. Whenever the
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Algorithm 2 Schur Algorithm
procedure [c, s] = sym.schur2(A, p, ¢)(Schur Algorithm)

ifA(p,q) # 0
T = (A(g,q) — A(p, p))/(2A(p, )
ift >0
t=1/(z/1+12)
else
t=—1/(—t/1+12)
end
c=1/J/1+1?)
s =tc
else
c=1
s=0
end

end procedure

process described is simpler, further properties can be applied to the
autocovariance matrix. This is the case, for instance, of a stationary
process, where the autocovariance matrix is a Toeplitz matrix; the
Arnoldi algorithm (Sorensen 1997) can then be used.

The Arnoldi algorithm produces a set of orthogonal vectors,
obtained by an iterative projection on a given matrix A. The
subspace generated from this projection is called Krilov subspace
(Golub & Van Loan 1996) and the iterations for this method are
given by the following equation:

AVi=ViH + fref. VIVi=1L, V/fi=0.

where A is the autocovariance or covariance matrix obtained
from the signal samples, V) are the projections, and H; is the
representation of the projection of A on K(A, vg; k).

The advantage of this algorithm for our purposes is twofold: first it
does not change the properties of the matrix A, so that the Hermitian
structure can be exploited and is stored efficiently; secondly, it
returns a k-rank matrix H, with k the amount of eigenvalues of
interest relating the largest eigenvalues of A.

The routine consists of the following steps:

(i) build the autocovariance matrix;
(i1) run the Arnoldi algorithm iterations;
(iii) compute Givens rotations (Golub & Van Loan 1996).

Algorithm 3 Arnoldi Truncated Algorithm

Input: (A,vg) Output:(Vi, Hy, fi) such that AV, =V H; +

fkekT,VkTVk = Ikand Vkak =01. v« U]/ ||U1 ||2 w <— AU;3.

H, = (al); V= (Ul); f] =w — ‘Ul()ll;4. for j=1,2,3,‘..,k—

4.1 Bi=1fllsvjp = f/Bj:42  Vig =, vj);Hj =
H

(IBJET>43 = Al)j+1;4.4 h = VinIZ;Hj-H =(ijh)745

J
fj =2 VJ‘+1h;5. end

The computational cost of Arnoldi implementation is O(kNlogN),
where k are the eigenvalues of interest. The procedure returns a set
of eigenpairs of the matrix H that are an approximation of those of
matrix A. In order to show the responsiveness of the eigenvalue
spectrum, a linear chirp at different SNR ratios was analysed.
Fig. A1 (top panel) shows the pure noise case. The upper plot of the
panel is its PSD, while the plot on the bottom is the eigenspectrum.
The following Figs Al (upper middle panel), Al (lower middle
panel), and A1l (bottom panel) show the chirp with an SNR equal
to, respectively, —18, —13 dB, and noiseless. Note the behaviour of
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Table Al. Computation time (in seconds) and value of the first eigenvalue computed using the Arnoldi algorithm, implemented both with

Matlab and C-CUDA. N refers to the dimension of the input matrix.

Matlab computation

C-CUDA computation time

N (samples) time (s) (s) Matlab first eigenvalue C-CUDA first eigenvalue
1024 0.12204 0.469 98 23.202 82 23.202 81
2048 0.14946 0.49409 46.41253 46.41252
4096 0.336 67 0.54417 92.83205 92.83202
10240 0.82349 0.66072 232.090 68 232.090 63
20480 2.07194 0.80144 464.188 32 464.188 32
40960 3.17558 1.12395 928.38393 928.38372
51200 3.35672 1.18899 1160.481 60 1160.481 30
102 400 8.98926 2.79724 2320.97040 2320.969 80
512000 71.05971 13.78155 11604.880 00 11604.878 00
819200 78.51755 22.65362 18567.813 00 18 567.808 00

the largest eigenvalue in each plot: as the SNR increases, the largest
eigenvalue increases in turn.

Also, in the particular case of the Arnoldi algorithm, the most
time-consuming computation is at step 4.3, where a matrix-vector
multiplication is run, thus with a complexity O(N?). By exploiting
the particular Hermitian structure of A, it is possible to optimize this
step: by virtue of the FFT, the matrix multiplication is a convolution
in the time domain, equal to a multiplication in the frequency
domain, at a cost of Nlog (N). The Table Al below shows results
obtained from the same algorithm implemented both in Matlab and
C-CUDA code. Each row shows time consumption and the first
eigenvalue given by Matlab and C-CUDA. If we compare the last
two columns of Table A1, we notice that the two methods differ
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by an absolute error less than 4 x 1073, The first 45 eigenvalues
obtained with the two different methods give a root-mean-square
error of 0.3. Absence of convergence can be experienced, which
translates into as a loss of orthogonality between the extracted
eigenvectors. A restart of the algorithm is then required. It turns
out that, for the few eigenvalues we used, that was not necessary.
The results also show that for N less than 4096 samples the CPU
is faster than the GPU due to low speed transfer between host
and GPU-device. The tests presented here were obtained using
a linux platform Ubuntu 18.04 with CUDA 10.0 running on a
Intel® Core™ i7 CPU @ 2.50 GHz.The GPU device is GeForce
GTX 850M @ 902Mhz, onboard memory 2GiB DDR3, 640 CUDA

cores.
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Figure Al. Test simulation using a linear chirp with 1024 samples and
90 eigenvalues. For each panel the upper plot represents the PSD of the
reconstructed signal, the lower plot shows the corresponding eigenspectrum.
The top panel shows the PSD and eigenspectrum for only white noise. The
upper middle and the lower middle panels show the same as the top panel
but for a chirp buried in white noise with an SNR of —18 and —13 dB,
respectively. The bottom panel shows the same results for a chirp without
noise.

This paper has been typeset from a TX/I&TEX file prepared by the author.

KLT performance for astronomical signals 83

MNRAS 494, 69-83 (2020)

020z aunp | uo Jasn ABojouyoa] Jo aynsu| eluloed Aq Z8/+085/69/1/y61/1oBNSqe-ad1e/seluw/woo dno olwapese//:sdiy Woll papeojumoc]



