254 research outputs found

    Current Emergency Locator Transmitter (ELT) deficiencies and potential improvements utilizing TSO-C91a ELTs

    Get PDF
    An analysis was conducted of current ELT problems and potential improvements that could be made by employing the TSO-C91a ELTs to replace the current TSO-C91 ELTs. The scope of the study included the following: (1) validate the problems; (2) determine specific failure causes; (3) determine false alarm causes; (4) estimate improvements from TSO-C91a; (5) estimate benefits from replacement of the current ELTs; and (6) determine need and benefits for improved ELT inspection and maintenance. A detailed comparison between the two requirements documents (TSO-C91 and -91a) was made to assess improved performance of the ELT in each category of failure cause and each cause of false alarms. The comparison and analysis resulted in projecting a success of operation rate approximately 3 times the current rate and a reduction in false alarms to 0.25 of those generated by TSO-C91 ELTs. These improvements led to a projection of benefits of approximately 25 additional lives to be saved each year with TSO-C91a ELTs and an improved inspection and maintenance program

    Developing sexual competence? Exploring strategies for the provision of effective sexualities and relationships education

    Get PDF
    School-based sexualities and relationships education (SRE) offers one of the most promising means of improving young people's sexual health through developing 'sexual competence'. In the absence of evidence on whether the term holds the same meanings for young people and adults (e.g. teachers, researchers, policy-makers), the paper explores 'adult' notions of sexual competence as construed in research data and alluded to in UK Government guidance on SRE, then draws on empirical research with young people on factors that affect the contexts, motivations and outcomes of sexual encounters, and therefore have implications for sexual competence. These data from young people also challenge more traditional approaches to sexualities education in highlighting disjunctions between the content of school-based input and their reported sexual experience. The paper concludes by considering the implications of these insights for developing a shared notion of what SRE is trying to achieve and suggestions for recognition in the content and approaches to SRE.</p

    Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    Get PDF
    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster

    Comparison of Degradation Rates of Individual Modules Held at Maximum Power

    Get PDF
    States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. In this paper, we present a comparison of maximum power degradation rates of individual modules under out-door conditions in Golden, Colorado. Test modules in-clude single- and polycrystalline-Si (x-Si, poly-Si), amor-phous Si (a-Si, single, dual, and triple junction), CdTe, Cu-In-Ga-Se-S (CIS), and c-Si/a-Si heterostructure, from nine difference manufacturers. From monthly blocks of output power data, ratings were determined using multiple re-gressions to Performance Test Conditions (PTC). Plotting the power ratings versus time allowed degradation rates to be calculated from linear regressions. We also include a summary of module degradation rates obtained from the open literature over the past five years. Compared with the common rule-of-thumb value of 1 % per year, many modules are seen to have significantly smaller degrada-tion rates. A few modules, however, degrade significantly faster

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure

    Phase transitions in biological membranes

    Full text link
    Native membranes of biological cells display melting transitions of their lipids at a temperature of 10-20 degrees below body temperature. Such transitions can be observed in various bacterial cells, in nerves, in cancer cells, but also in lung surfactant. It seems as if the presence of transitions slightly below physiological temperature is a generic property of most cells. They are important because they influence many physical properties of the membranes. At the transition temperature, membranes display a larger permeability that is accompanied by ion-channel-like phenomena even in the complete absence of proteins. Membranes are softer, which implies that phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal propagation phenomena related to nerve pulses are strongly enhanced. The position of transitions can be affected by changes in temperature, pressure, pH and salt concentration or by the presence of anesthetics. Thus, even at physiological temperature, these transitions are of relevance. There position and thereby the physical properties of the membrane can be controlled by changes in the intensive thermodynamic variables. Here, we review some of the experimental findings and the thermodynamics that describes the control of the membrane function.Comment: 23 pages, 15 figure

    Proximal tibial osteophytes and their relationship with the height of the tibial spines of the intercondylar eminence: paleopathological study

    Get PDF
    Tibial spiking (i.e., spurring of tibial spines), eburnation, and osteophytes are considered features of osteoarthritis. This investigation employed direct inspection of the medial and lateral tibial plateaus in paleopathological specimens to analyze the frequency and morphological features of osteoarthritis and to define any relationship between the size of osteophytes and that of the intercondylar tibial spines. A total of 35 tibial bone specimens were evaluated for the degree of osteoarthritis and presence of eburnation. Each plateau was also divided into four quadrants and the presence and size of bone outgrowths were recorded in each quadrant. The “medial/lateral tibial intercondylar spine index” for each specimen was calculated as follows: (medial/lateral intercondylar tibial spine height)/(anteroposterior width of the superior tibial surface). The relationships between medial and lateral tibial height indexes with the degree of osteoarthritis were then tested. Osteophytes were observed more frequently in the anterior quadrants of both tibial plateaus than in the posterior quadrants (29 vs 16 for the medial tibial plateau [p = 0.01] and 28 vs 20 for the lateral tibial plateau [p = 0.04]). Eburnation was seen more frequently in the posterior regions of both tibial plateaus than in the anterior regions (17 vs 5, p &lt; 0.01). In specimens with no signs of osteoarthritis the lateral intercondylar tibial index was significantly lower than that in specimens with some degree of osteoarthritis (p = 0.02). The medial intercondylar tibial index of the specimens with no signs of osteoarthritis was not significantly different from that of the specimens with some degree of osteoarthritis (p = 0.45). There was a positive correlation between the lateral spine height index and the overall grading of osteoarthritis, (r = 0.6, p &lt; 0.01). In the anteromedial and posteromedial quadrants of the lateral tibial plateau, the association between the lateral intercondylar tibial spine index and the grade of osteophytes was 0.5 (p &lt; 0.01) and 0.7 (p &lt; 0.01) respectively. Spiking of the lateral tibial intercondylar spine is associated with osteophyte formation and osteoarthritis. Eburnation occurs mainly in the posterior parts of the tibial plateaus while osteophytes arise mainly in the anterior parts. These findings suggest that stresses occurring in the flexed knee may contribute to many of the morphological abnormalities of osteoarthritis

    Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding Site for general anesthetics

    No full text
    [Image: see text] Anesthetics are thought to mediate a portion of their activity via binding to and modulation of potassium channels. In particular, tandem pore potassium channels (K2P) are transmembrane ion channels whose current is modulated by the presence of general anesthetics and whose genetic absence has been shown to confer a level of anesthetic resistance. While the exact molecular structure of all K2P forms remains unknown, significant progress has been made toward understanding their structure and interactions with anesthetics via the methods of molecular modeling, coupled with the recently released higher resolution structures of homologous potassium channels to act as templates. Such models reveal the convergence of amino acid regions that are known to modulate anesthetic activity onto a common three- dimensional cavity that forms a putative anesthetic binding site. The model successfully predicts additional important residues that are also involved in the putative binding site as validated by the results of suggested experimental mutations. Such a model can now be used to further predict other amino acid residues that may be intimately involved in the target-based structure–activity relationships that are necessary for anesthetic binding
    corecore