332 research outputs found

    Current Emergency Locator Transmitter (ELT) deficiencies and potential improvements utilizing TSO-C91a ELTs

    Get PDF
    An analysis was conducted of current ELT problems and potential improvements that could be made by employing the TSO-C91a ELTs to replace the current TSO-C91 ELTs. The scope of the study included the following: (1) validate the problems; (2) determine specific failure causes; (3) determine false alarm causes; (4) estimate improvements from TSO-C91a; (5) estimate benefits from replacement of the current ELTs; and (6) determine need and benefits for improved ELT inspection and maintenance. A detailed comparison between the two requirements documents (TSO-C91 and -91a) was made to assess improved performance of the ELT in each category of failure cause and each cause of false alarms. The comparison and analysis resulted in projecting a success of operation rate approximately 3 times the current rate and a reduction in false alarms to 0.25 of those generated by TSO-C91 ELTs. These improvements led to a projection of benefits of approximately 25 additional lives to be saved each year with TSO-C91a ELTs and an improved inspection and maintenance program

    Statistical energy analysis computer program, user's guide

    Get PDF
    A high frequency random vibration analysis, (statistical energy analysis (SEA) method) is examined. The SEA method accomplishes high frequency prediction of arbitrary structural configurations. A general SEA computer program is described. A summary of SEA theory, example problems of SEA program application, and complete program listing are presented

    Exploring the Impacts that an Urban Public High School Experience has on Bridgewater State University Students’ Perceived College Preparedness

    Get PDF
    College preparedness is a widely researched topic within education. Previous research has found that an individual’s college readiness is primarily determined by the rigor of their high school academics, their involvement in extracurricular activities, and their knowledge of the higher educational system (Conley 2008; Glater 2016; Glennie et al. 2015; Holles 2016). The purpose of this project was to investigate whether or not Bridgewater State University students felt that these factors affected their individual preparedness for college. For this project, I interviewed 18 students who attended urban public high schools in Southeastern Massachusetts in order to explore whether or not their high school experiences adequately prepared them for college-level academics. College preparedness is important to explore in urban communities specifically because research has shown the important role that an individual’s socioeconomic status, race, and previous academic experiences can have on one’s ability to matriculate and succeed in higher education (Glater 2016). Brockton, Fall River, Taunton and New Bedford are urban communities with a large proportion of low income and minority students, and it is important to add their experiences to the conversation surrounding college preparedness. During in-depth interviews, subjects discussed their coursework, extracurricular involvement, and employment in high school. In addition, the subjects described their college application process, their college coursework and their college employment. The data collected from these interviews shows the importance of mentorship for students preparing for college. Many interviewees cited a specific mentor who used their knowledge about college to assist their students. Additionally, those students who did not feel prepared experienced a lack of support and guidance as they were looking into pursuing higher education

    Pressure buildup during CO2 injection in brine aquifers using the Forchheimer equation

    Get PDF
    If geo-sequestration of CO2 is to be employed as a key emissions reduction method in the global effort to mitigate climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this talk, a new similarity solution is derived using the method of matched asymptotic expansions. By allowing for slight compressibility in the fluids and formation, the solution improves on previous work by not requiring the specification of an arbitrary radius of influence. A large-time approximation of the solution is then extended to account for non-Darcy inertial effects using the Forchheimer equation. Both solutions are verified by comparison with finite difference solutions. The results show that inertial losses will often be comparable, and sometimes greater than, the viscous Darcy-like losses associated with the brine displacement, although this is strongly dependent on formation porosity and permeability

    Statistical energy analysis of complex structures, phase 2

    Get PDF
    A method for estimating the structural vibration properties of complex systems in high frequency environments was investigated. The structure analyzed was the Materials Experiment Assembly, (MEA), which is a portion of the OST-2A payload for the space transportation system. Statistical energy analysis (SEA) techniques were used to model the structure and predict the structural element response to acoustic excitation. A comparison of the intial response predictions and measured acoustic test data is presented. The conclusions indicate that: the SEA predicted the response of primary structure to acoustic excitation over a wide range of frequencies; and the contribution of mechanically induced random vibration to the total MEA is not significant

    Channel gating of the glycine receptor changes accessibility to residues implicated in receptor potentiation by alcohols and anesthetics.

    Get PDF
    Abstract The glycine receptor is a target for both alcohols and anesthetics, and certain amino acids in the α1 subunit transmembrane segments (TM) are critical for drug effects. Introducing larger amino acids at these positions increases the potency of glycine, suggesting that introducing larger residues, or drug molecules, into the drug-binding cavity facilitates channel opening. A possible mechanism for these actions is that the volume of the cavity expands and contracts during channel opening and closing. To investigate this hypothesis, mutations for amino acids in TM1 (I229C) and TM2 (G256C, T259C, V260C, M263C, T264C, S267C, S270C) and TM3 (A288C) were individually expressed in Xenopus laevis oocytes. The ability of sulfhydryl-specific alkyl methanethiosulfonate (MTS) compounds of different lengths to covalently react with introduced cysteines in both the closed and open states of the receptor was determined. S267C was accessible to short chain (C3–C8) MTS in both open and closed states, but was only accessible to longer chain (C10–C16) MTS compounds in the open state. Reaction with S267C was faster in the open state. I229C and A288C showed state-dependent reaction with MTS only in the presence of agonist. M263C and S270C were also accessible to MTS labeling. Mutated residues more intracellular than M263C did not react, indicating a floor of the cavity. These data demonstrate that the conformational changes accompanying channel gating increase accessibility to amino acids critical for drug action in TM1, TM2, and TM3, which may provide a mechanism by which alcohols and anesthetics can act on glycine (and likely other) receptors

    Developing sexual competence? Exploring strategies for the provision of effective sexualities and relationships education

    Get PDF
    School-based sexualities and relationships education (SRE) offers one of the most promising means of improving young people's sexual health through developing 'sexual competence'. In the absence of evidence on whether the term holds the same meanings for young people and adults (e.g. teachers, researchers, policy-makers), the paper explores 'adult' notions of sexual competence as construed in research data and alluded to in UK Government guidance on SRE, then draws on empirical research with young people on factors that affect the contexts, motivations and outcomes of sexual encounters, and therefore have implications for sexual competence. These data from young people also challenge more traditional approaches to sexualities education in highlighting disjunctions between the content of school-based input and their reported sexual experience. The paper concludes by considering the implications of these insights for developing a shared notion of what SRE is trying to achieve and suggestions for recognition in the content and approaches to SRE.</p

    Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    Get PDF
    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster
    • …
    corecore