363 research outputs found

    Current Emergency Locator Transmitter (ELT) deficiencies and potential improvements utilizing TSO-C91a ELTs

    Get PDF
    An analysis was conducted of current ELT problems and potential improvements that could be made by employing the TSO-C91a ELTs to replace the current TSO-C91 ELTs. The scope of the study included the following: (1) validate the problems; (2) determine specific failure causes; (3) determine false alarm causes; (4) estimate improvements from TSO-C91a; (5) estimate benefits from replacement of the current ELTs; and (6) determine need and benefits for improved ELT inspection and maintenance. A detailed comparison between the two requirements documents (TSO-C91 and -91a) was made to assess improved performance of the ELT in each category of failure cause and each cause of false alarms. The comparison and analysis resulted in projecting a success of operation rate approximately 3 times the current rate and a reduction in false alarms to 0.25 of those generated by TSO-C91 ELTs. These improvements led to a projection of benefits of approximately 25 additional lives to be saved each year with TSO-C91a ELTs and an improved inspection and maintenance program

    Thermal distortion analysis of the space station solar dynamic concentrator

    Get PDF
    A method was developed to evaluate the thermal distortion of the Space Station Solar Dynamic Concentrator and the effects of thermal distortion on concentrator optical performance. The analytical method includes generating temperature distributions with TRASYS and SINDA models, interfacing the SINDA results with the SINDA-NASTRAN Interface Program (SNIP), calculating thermal distortion with a NASTRAN/PATRAN finite element model, and providing flux distribution maps within the receiver with the ray tracing OFFSET program. Temperature distributions, thermally induced slope errors, and flux distribution maps within the receiver are discussed. Results during a typical orbit indicate that temperatures of the hexagonal panels and triangular facets range between -18 and 99 C (-1 to 210 F), facet rotations are less than 0.2 mrad, and a change in facet radius due to thermal flattening is less than 5 percent. The predicted power loss with thermal distortion effects was less than 0.3 percent. The thermal distortion of the Solar Dynamic concentrator has negligible effect on the flux distribution within the receiver cavity

    Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    Get PDF
    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping

    High Specific Power Motors in LN2 and LH2

    Get PDF
    A switched reluctance motor has been operated in liquid nitrogen (LN2) with a power density as high as that reported for any motor or generator. The high performance stems from the low resistivity of Cu at LN2 temperature and from the geometry of the windings, the combination of which permits steady-state rms current density up to 7000 A/cm2, about 10 times that possible in coils cooled by natural convection at room temperature. The Joule heating in the coils is conducted to the end turns for rejection to the LN2 bath. Minimal heat rejection occurs in the motor slots, preserving that region for conductor. In the end turns, the conductor layers are spaced to form a heat-exchanger-like structure that permits nucleate boiling over a large surface area. Although tests were performed in LN2 for convenience, this motor was designed as a prototype for use with liquid hydrogen (LH2) as the coolant. End-cooled coils would perform even better in LH2 because of further increases in copper electrical and thermal conductivities. Thermal analyses comparing LN2 and LH2 cooling are presented verifying that end-cooled coils in LH2 could be either much longer or could operate at higher current density without thermal runaway than in LN2

    Developing sexual competence? Exploring strategies for the provision of effective sexualities and relationships education

    Get PDF
    School-based sexualities and relationships education (SRE) offers one of the most promising means of improving young people's sexual health through developing 'sexual competence'. In the absence of evidence on whether the term holds the same meanings for young people and adults (e.g. teachers, researchers, policy-makers), the paper explores 'adult' notions of sexual competence as construed in research data and alluded to in UK Government guidance on SRE, then draws on empirical research with young people on factors that affect the contexts, motivations and outcomes of sexual encounters, and therefore have implications for sexual competence. These data from young people also challenge more traditional approaches to sexualities education in highlighting disjunctions between the content of school-based input and their reported sexual experience. The paper concludes by considering the implications of these insights for developing a shared notion of what SRE is trying to achieve and suggestions for recognition in the content and approaches to SRE.</p

    Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    Get PDF
    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster

    Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    Get PDF
    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing replaces the ball bearing in front of the compressor, and the second replaces the roller bearing behind the burner. The rig was made operational to 10,000 rpm under Smart Efficient Components funding, and both position and current adaptive vibration control have been demonstrated. Upon program completion, recommendations will be made as to the efficacy of the conical magnetic bearing for active stall control

    Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape

    Get PDF
    This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel
    • …
    corecore