29 research outputs found

    The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars.

    Get PDF
    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane and Little Gem express an incompatible host-pathogen interaction as a hypersensitive response (HR) to California strains of Xcv resulting in resistance. Little was known about the inheritance of resistance; however, resistance to other lettuce pathogens is often determined by resistance gene candidates (RGCs) encoding nucleotide-binding leucine-rich repeat (NB-LRR) proteins. Therefore, we determined the inheritance of BLS resistance in the cultivars La Brillante, Little Gem and Pavane and mapped it relative to RGCs. The reaction to Xcv was analyzed in nine F1, F2 and recombinant inbred line populations of lettuce from HR×compatible or HR×HR crosses. The HR in La Brillante, Pavane and Little Gem is conditioned by single dominant genes, which are either allelic or closely linked genes. The resistance gene in La Brillante was designated Xanthomonas resistance 1 (Xar1) and mapped to lettuce linkage group 2. Xar1 is present in a genomic region that contains numerous NB-LRR encoding RGCs and functional pathogen resistance loci in the RGC2 family. The Xar1 gene confers a high level of BLS resistance in the greenhouse and field that can be introgressed into commercial lettuce cultivars to reduce BLS losses using molecular markers

    Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    Get PDF
    BACKGROUND: High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). RESULTS: We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. CONCLUSION: By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously

    Molecular markers reliably predict post-harvest deterioration of fresh-cut lettuce in modified atmosphere packaging

    No full text
    Salad crops: Longer-lasting lettuce Genetic studies have shown that the rate of deterioration of cut lettuce leaves in pre-packaged salads is a highly heritable trait, governed by gene regions that could be used to breed longer-lasting varieties. Many genetic studies have aimed at breeding better varieties of lettuce (Lactuca sativa), but most have focused upon those grown for whole heads, rather than the cut leaves that are becoming increasingly popular with consumers. An international team led by Ivan Simko, of the USDA in Salinas, California, have developed a genetic assay to distinguish fast- from slow-deteriorating lettuce varieties based on a single DNA region identified in a previous study. Their marker-based test may be useful in developing lettuces that show both disease resistance during cultivation, and a longer shelf life once leaves are cut for sale
    corecore