4,001 research outputs found

    Relativistic Charge Form Factor of the Deuteron

    Get PDF
    Relativistic integral representation in terms of experimental neutron-proton scattering phase shifts alone is used to compute the charge form factor of the deuteron GCd(Q2)G_{Cd}(Q^2). The results of numerical calculations of GCd(Q2)|G_{Cd}(Q^2)| are presented in the interval of the four-momentum transfers squared 0Q235fm20 \leq Q^2 \leq 35 fm^{-2}. Zero and the prominent secondary maximum in GCd(Q2) |G_{Cd}(Q^2)| are the direct consequences of the change of sign in the experimental 3S1^3S_1- phase shifts. Till the point Q220fm2Q^2 \simeq 20 fm^{-2} the total relativistic correction to GCd(Q2)|G_{Cd}(Q^2)| is positive and reaches the maximal value of 25% at Q214fm2Q^2 \simeq 14 fm^{-2}.Comment: 9 pages, LaTeX, 2 postscript figures, uses wor-sci.sty, epsf.st

    Magnetic Radius of the Deuteron

    Get PDF
    The root-mean square radius of the deuteron magnetic moment distribution, rMd r_{Md}, is calculated for several realistic models of the NNNN--interaction. For the Paris potential the result is rMd=2.312±0.010r_{Md} = 2.312 \pm 0.010 fm. The dependence of rMdr_{Md} on the choice of NNNN model, relativistic effects and meson exchange currents is investigated. The experimental value of rMdr_{Md} is also considered. The necessity of new precise measurements of the deuteron magnetic form factor at low values of Q2Q^2 is stressed.Comment: 4 pages, RevTe

    Growth rates of the Weibel and tearing mode instabilities in a relativistic pair plasma

    Full text link
    We present an algorithm for solving the linear dispersion relation in an inhomogeneous, magnetised, relativistic plasma. The method is a generalisation of a previously reported algorithm that was limited to the homogeneous case. The extension involves projecting the spatial dependence of the perturbations onto a set of basis functions that satisfy the boundary conditions (spectral Galerkin method). To test this algorithm in the homogeneous case, we derive an analytical expression for the growth rate of the Weibel instability for a relativistic Maxwellian distribution and compare it with the numerical results. In the inhomogeneous case, we present solutions of the dispersion relation for the relativistic tearing mode, making no assumption about the thickness of the current sheet, and check the numerical method against the analytical expression.Comment: Accepted by PPC

    The exact Darwin Lagrangian

    Get PDF
    Darwin (1920) noted that when radiation can be neglected it should be possible to eliminate the radiation degrees-of-freedom from the action of classical electrodynamics and keep the discrete particle degrees-of-freedom only. Darwin derived his well known Lagrangian by series expansion in v/cv/c keeping terms up to order (v/c)2(v/c)^2. Since radiation is due to acceleration the assumption of low speed should not be necessary. A Lagrangian is suggested that neglects radiation without assuming low speed. It cures deficiencies of the Darwin Lagrangian in the ultra-relativistic regime.Comment: 2.5 pages, no figure

    A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD)

    Full text link
    We presented the first particle based, Lagrangian code that can follow the collisional/accretional/dynamical evolution of a large number of km-sized planetesimals through the entire growth process to become planets. We refer to it as the 'Lagrangian Integrator for Planetary Accretion and Dynamics' or LIPAD. LIPAD is built on top of SyMBA, which is a symplectic NN-body integrator. In order to handle the very large number of planetesimals required by planet formation simulations, we introduce the concept of a `tracer' particle. Each tracer is intended to represent a large number of disk particles on roughly the same orbit and size as one another, and is characterized by three numbers: the physical radius, the bulk density, and the total mass of the disk particles represented by the tracer. We developed statistical algorithms that follow the dynamical and collisional evolution of the tracers due to the presence of one another. The tracers mainly dynamically interact with the larger objects (`planetary embryos') in the normal N-body way. LIPAD's greatest strength is that it can accurately model the wholesale redistribution of planetesimals due to gravitational interaction with the embryos, which has recently been shown to significantly affect the growth rate of planetary embryos . We verify the code via a comprehensive set of tests which compare our results with those of Eulerian and/or direct N-body codes.Comment: Accepted to the Astronomical Journal. See http://www.boulder.swri.edu/~hal/LIPAD.html for more detail including animation

    Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas

    Full text link
    We employ Navier-Stokes granular hydrodynamics to investigate the long-time behavior of clustering instability in a freely cooling dilute granular gas in two dimensions. We find that, in circular containers, the homogeneous cooling state (HCS) of the gas loses its stability via a sub-critical pitchfork bifurcation. There are no time-independent solutions for the gas density in the supercritical region, and we present analytical and numerical evidence that the gas develops thermal collapse unarrested by heat diffusion. To get more insight, we switch to a simpler geometry of a narrow-sector-shaped container. Here the HCS loses its stability via a transcritical bifurcation. For some initial conditions a time-independent inhomogeneous density profile sets in, qualitatively similar to that previously found in a narrow-channel geometry. For other initial conditions, however, the dilute gas develops thermal collapse unarrested by heat diffusion. We determine the dynamic scalings of the flow close to collapse analytically and verify them in hydrodynamic simulations. The results of this work imply that, in dimension higher than one, Navier-Stokes hydrodynamics of a dilute granular gas is prone to finite-time density blowups. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure

    Ultra-relativistic electrostatic Bernstein waves

    Get PDF
    A new general form of the dispersion relation for electrostatic Bernstein waves in ultra-relativistic pair plasmas, characterized by a−1 = kBT/(mec2)  1, is derived in this paper. The parameter Sp = aΩ0/ωp, where Ω0 is the rest cyclotron frequency for electrons or positrons and ωp is the electron (or positron) plasma frequency, plays a crucial role in characterizing these waves. In particular, Sp has a restricted range for permitted wave solutions; this range is effectively unlimited for classical plasmas, but is significant for the ultra-relativistic case. The characterization of these waves is applied in particular to the presence of such plasmas in pulsar atmospheres
    corecore