124 research outputs found

    Special Issue: Biochemical and thermochemical conversion processes of lignocellulosic biomass fractionated streams

    Get PDF
    peer-reviewedGlobal consumption of materials such as forest resources, fossil fuels, earth metals and minerals are expected to double in the next 30 years, while annual waste production is estimated to increase by approximately 70% by 2050 [1]. Keeping the resource consumption within planetary boundaries, we strive to minimize the carbon and environmental footprint and concurrently double the waste material use in the coming decades. Preventing food waste from being generated could have a major impact on waste collection systems and on the capacity of bio-waste management facilities worldwide [2]. Therefore, sustainable food waste management is a key part of any green business strategy to convert food waste into green fuels

    Kinetic study of tire carbon black and biomass soot steam activation used for the removal of phenol and chlorine from drinking water

    Get PDF
    This study aims to demonstrate a novel method for removing toxic chemicals using soot produced from wood and herbaceous biomass pyrolyzed in a drop tube reactor and tire pyrolytic carbon black. In order to improve the economic performance and reliability of entrained flow gasification, biomass soot has the potential to be captured, activated and further used as a sorbent to remove a broad range of pollutants from wastewater. In recent years, the disposal of waste tires has become an important issue. The liquid hydrocarbons and solid char residue from thermal conversion of waste tires have potential to be used as environmentally benign fuel and activated carbon. In the present work, the influence of ash content, nanostructure, particle size, and porosity on the filter efficiency of steam activated carbon materials was studied. It has been shown for the first time that steam activated soot and carbon black can remove phenol and chloride with the filter efficiencies as high as 95 %. The correlation of the filter efficiency to material properties showed that the presence of alkali and steam activation time were the key parameters affecting filter efficiencies. Kinetic parameters for the steam activation of tire pyrolytic carbon black and biomass soot have been determined by thermogravimetric analysis using steam as an activation agent. The feedstock for the soot production, activation temperatures and residence time were varied. The results showed that the rate of steam activation is 10 times faster than the activation at lower temperature. This study demonstrated that the steam activation process is suitable to prepare activated soot with the high surface area at the short residence time and at temperatures below 800°C. Reaction evolution has successfully been modelled, including the maximum reaction rate obtained in experimental results. Moreover, intrinsic kinetic parameters of the activation reaction order, activation energy and pre-exponential factor – were calculated

    Charcoal as an alternative reductant in ferroalloy production: A review

    Get PDF
    peer-reviewedThis paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different feedstocks and suitable pre-treatment and post-treatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in ferroalloy industries is reviewed to fill out the research gaps related to charcoal properties provided by current production technologies and the integration of renewable reductants in the existing industrial infrastructure. This review also provides insights and recommendations to the unresolved challenges related to the charcoal process economics. Several possibilities to integrate the production of bio-based reductants with bio-refineries to lower the cost and increase the total efficiency are given. A comparison of challenges related to energy efficient charcoal production and formation of emissions in classical kiln technologies are discussed to underline the potential of bio-based reductant usage in ferroalloy reduction process

    Secondary comminution of wood pellets in power plant and laboratory-scale mills

    Get PDF
    peer-reviewedThe full text of this article will not be available in ULIR until the embargo expires on the 14/03/2019This study aims to determine the influence of mill type and pellet wood composition on particle size and shape of milled wood. The size and shape characteristics of pellets comminuted using power plant roller mills were compared with those obtained by using laboratory-scale roller- and hammer mills. A 2D dynamic imaging device was used for particle characterization. It was shown that mill type has a significant impact on particle size but an almost negligible effect on the shape of milled wood. Comminution in the pilot plant using a Loesche roller mill requires less energy than using a hammer mill, but generates a larger fraction of coarse particles. The laboratory-scale roller mill provides comparable results with the power plant roller mill with respect to particle size and shape

    Life cycle assessment of renewable reductants in the ferromanganese alloy production: a review

    Get PDF
    peer-reviewedThis study examined the literature on life cycle assessment on the ferromanganese alloy production route. The environmental impacts of raw material acquisition through the production of carbon reductants to the production of ferromanganese alloys were examined and compared. The transition from the current fossil fuel-based production to a more sustainable production route was reviewed. Besides the environmental impact, policy and socioeconomic impacts were considered due to evaluation course of differences in the production routes. Charcoal has the potential to substantially replace fossil fuel reductants in the upcoming decades. The environmental impact from current ferromanganese alloy production can be reduced by ≄20% by the charcoal produced in slow pyrolysis kilns, which can be further reduced by ≄50% for a sustainable production in high-efficient retorts. Certificated biomass can ensure a sustainable growth to avoid deforestation and acidification of the environment. Although greenhouse gas emissions from transport are low for the ferromanganese alloy production, they may increase due to the low bulk density of charcoal and the decentralized production of biomass. However, centralized charcoal retorts can provide additional by-products or biofuel and ensure better product quality for the industrial application. Further upgrading of charcoal can finally result in a CO2 neutral ferromanganese alloy production for the renewable power supply

    Modeling of radical structures in biochar using DFT calculations

    Get PDF
    Carbon is a key ingredient for producing metals used for cellphones, laptop computers, photovoltaic panels, and related solid state silicon devices employed by mankind. Thus, introduction of an alternative reductant based on bioresources into steel manufacturing without significant investments in a new technology is of high importance and wide impact. The production of iron, steel, and many other metals can employ biocarbon as the needed reductant; but because of cost, coals are usually used instead. Please click on the file below for full content of the abstract

    Parametric study of lab-scale and pilot-scale biomass torrefaction for the production of woodstove briquettes

    Get PDF
    Conversion of torrefied olive residues to high-density briquettes is a potential solution to solid waste problems as well as to the lack of locally available fuel wood in Ireland. In this study, olive stones were torrefied at various temperatures and holding times in a fixed-bed reactor. Effects of process parameters such as heat treatment temperature from 200 to 300℃, residence time from 30 to 60 min, and particle size from 0.18 to 3 mm on the yield and composition of products were investigated and the results were compared with the mass balances from industrial-scale torrefaction plant at the Arigna Fuels (Carrick-on-Shannon, Ireland). The olive stones of larger particle size produced more liquid and gaseous products than smaller particles in a fixed bed reactor, whereas particle size had significantly less influence on the product yields than residence time and heat treatment temperature. The analysis of liquid products of the industrial-scale plant showed a greater content of heavy molecular products compared to the lab-scale pyrolysis using high-performance liquid chromatography and size exclusion chromatography techniques. New value-added products were developed from the tar compounds produced at the industrial-scale torrefaction plant. In addition, the lab-scale experiments showed that the ash content of torrefied biomass significantly increased with the increased feedstock particle size. The torrefied olive stones briquettes using different binders were tested in a conventional woodstove. Torrefaction of olive stones has been found to reduce the emissions by approximately 60% compared to the non-treated feedstock. This demonstrates that torrefaction has good potential as a cost-effective and sustainable process for the production of woodstove briquettes from low-quality feedstocks
    • 

    corecore