3 research outputs found

    Antenna on microstrip line with orthogonally placed dielectric resonator

    Get PDF
    Single-element antenna that uses microstrip line as a feeder and cylindrical dielectric resonator orthogonally oriented relative to the line as a radiating element has been investigated. The complete mathematical model of proposed design consisting of a number of analytical expressions for main antenna characteristics is obtained and verified. The analytical relation for antenna return loss versus stub length and coupling coefficients of dielectric resonator with the feeding line and open space is derived. The assessment of the potential possibility and conditions of perfect antenna matching with feeding line is carried out. The influence of main parameters of a dielectric resonator antenna on its characteristics is examined. The numerical analysis of different antenna parameters proving the obtained analytical expressions is performed. The results of theoretical analysis are in good agreement with experimental data

    Stripe delay filters

    No full text
    There are considered constructions of microsized stripe delay filters, which are realized on a basis of ceramic materials with high dielectric permittivity. Delay time of non-minimal phase filters is 7–12 ns at frequencies of 1900 MHz with relative bandwidth of 3.6–3.85%. Filters dimensions are comparable with ones used in portable communication devices. Dimensions of researched three-resonator filter at frequency of 1900 MHz are 8.4Γ—5Γ—2 mm with material dielectric permittivity Ξ΅r = 92, and 5-resonator filter ones are 9.2Γ—8.6Γ—2 mm. Filters are different from traditional delay filters. Two filters of considered ones contain odd resonator number and the third one contains four resonators and it has two cross couplings. The basis of the filters is amount of step-impedance stripe resonators pairs located close to each others whose electromagnetic coupling behavior is capacitive. There are represented the results of frequency characteristics simulation for different delay filters

    Stripe delay filters

    No full text
    ΠŸΠΎΠ»Π½Ρ‹ΠΉ тСкст доступСн Π½Π° сайтС издания ΠΏΠΎ подпискС: http://radio.kpi.ua/article/view/S002134701604004XThere are considered constructions of microsized stripe delay filters, which are realized on a basis of ceramic materials with high dielectric permittivity. Delay time of non-minimal phase filters is 7–12 ns at frequencies of 1900 MHz with relative bandwidth of 3.6–3.85%. Filters dimensions are comparable with ones used in portable communication devices. Dimensions of researched three-resonator filter at frequency of 1900 MHz are 8.4Γ—5Γ—2 mm with material dielectric permittivity Ξ΅α΅£ = 92, and 5-resonator filter ones are 9.2Γ—8.6Γ—2 mm. Filters are different from traditional delay filters. Two filters of considered ones contain odd resonator number and the third one contains four resonators and it has two cross couplings. The basis of the filters is amount of step-impedance stripe resonators pairs located close to each others whose electromagnetic coupling behavior is capacitive. There are represented the results of frequency characteristics simulation for different delay filters.РассмотрСны Π½ΠΎΠ²Ρ‹Π΅ конструкции ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹Ρ… полосковых Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π½Π° кСрамичСских ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ… с высокой диэлСктричСской ΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΡΡ‚ΡŒΡŽ. ВрСмя Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ Π² Π½ΠΎΠ²Ρ‹Ρ… нСминимально-Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ… составляСт 7–12 нс Π½Π° частотах ΠΎΠΊΠΎΠ»ΠΎ 1900 ΠœΠ“Ρ† с ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΡˆΠΈΡ€ΠΈΠ½ΠΎΠΉ полосы частот 3,6–3,85%. Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² соизмСримы с Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²Ρ‹Ρ… кСрамичСских Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π² ΠΏΠΎΡ€Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… устройствах связи. Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ исслСдованного Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Ρ‚Ρ€Π΅Ρ…Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ Π½Π° частотС 1900 ΠœΠ“Ρ† составили 8,4Γ—5Γ—2 ΠΌΠΌ ΠΏΡ€ΠΈ диэлСктричСской проницаСмости ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Ξ΅α΅£ = 92, Π° 5-Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° β€” 9,2Γ—8,6Γ—2 ΠΌΠΌ. Π€ΠΈΠ»ΡŒΡ‚Ρ€Ρ‹ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΎΡ‚ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ. Π”Π²Π° ΠΈΠ· рассмотрСнных Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² содСрТат Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ΅ число Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€ΠΎΠ², Π° Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€Π° ΠΈ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ двумя пСрСкрСстными связями. ΠžΡΠ½ΠΎΠ²Ρƒ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΏΠ°Ρ€Ρ‹ Π±Π»ΠΈΠ·ΠΊΠΎ располоТСнных Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ ступСнчато-импСдансных полосковых Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€ΠΎΠ², элСктромагнитная связь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ носит Смкостной Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования частотных характСристик Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ
    corecore