34 research outputs found

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine

    Role of hydrogen loading and glass composition on the defects generated by the femtosecond laser writing process of fiber Bragg gratings

    No full text
    The creation of fiber Bragg gratings (FBGs) in optical fibers by laser irradiation causes the formation of defects in the modified glass. We have used confocal fluorescence spectroscopy to identify the location and types of defects formed after writing FBGs with the femtosecond laser phase mask technique. Our results show that non-bridging oxygen hole centers (NBOHCs) and self-trapped excitons (Eδ’) are formed throughout all-silica core Sumitomo Z-fiber. Similar defects are observed for Ge-doped silica fiber, Corning SMF-28, but in this case the relative concentrations of NBOHC and Eδ’ vary from the core to the cladding. In both fibers, hydrogen loading prior to irradiation appears to passivate the defects except in the Ge-doped core where the NBOHC defects persist

    Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses

    No full text
    We have investigated the direct fabrication of subsurface waveguide amplifiers in Er-Yb zinc polyphosphate glass by utilizing the relationship between the initial glass composition and the resulting changes to the network structure after modification by fs laser pulses. Waveguides, exhibiting internal gain of 1 dB∕cm at 1.53 μm when pumped with 500 mW at 976 nm, were directly fabricated using a regenerative amplified Ti:sapphire 1 kHz, 180 fs laser system. Optical properties as well as insertion losses and internal gain are reported

    Thermal annealing of femtosecond laser written structures in silica glass

    No full text
    We have investigated the thermal stability of femtosecond laser modification inside fused silica. Raman and FL spectroscopy show that fs-laser induced non-bridging oxygen hole center (NBOHC) defects completely disappear at 300 °C, whereas changes in Si-O ring structures only anneal out after heat treatment at 800-900 °C. After annealing at 900 °C optical waveguides written inside the glass had completely disappeared whereas more significant damage induced in the glass remained. The results are related to different types of bond rearrangements in the glass network

    Thermal annealing of femtosecond laser written structures in silica glass

    No full text
    We have investigated the thermal stability of femtosecond laser modification inside fused silica. Raman and FL spectroscopy show that fs-laser induced non-bridging oxygen hole center (NBOHC) defects completely disappear at 300 °C, whereas changes in Si-O ring structures only anneal out after heat treatment at 800-900 °C. After annealing at 900 °C optical waveguides written inside the glass had completely disappeared whereas more significant damage induced in the glass remained. The results are related to different types of bond rearrangements in the glass network

    Direct femtosecond laser waveguide writing inside zinc phosphate glass

    Get PDF
    We report the relationship between the initial glass composition and the resulting microstructural changes after direct femtosecond laser waveguide writing with a 1 kHz repetition rate Ti:sapphire laser system. A zinc polyphosphate glass composition with an oxygen to phosphorus ratio of 3.25 has demonstrated positive refractive index changes induced inside the focal volume of a focusing microscope objective for laser pulse energies that can achieve intensities above the modification threshold. The permanent photo-induced changes can be used for direct fabrication of optical waveguides using single scan writing techniques. Changes to the localized glass network structure that produce positive changes in the refractive index of zinc phosphate glasses upon femtosecond laser irradiation have been studied using scanning confocal micro-Raman and fluorescence spectroscop

    Direct femtosecond laser waveguide writing inside zinc phosphate glass

    No full text
    We report the relationship between the initial glass composition and the resulting microstructural changes after direct femtosecond laser waveguide writing with a 1 kHz repetition rate Ti:sapphire laser system. A zinc polyphosphate glass composition with an oxygen to phosphorus ratio of 3.25 has demonstrated positive refractive index changes induced inside the focal volume of a focusing microscope objective for laser pulse energies that can achieve intensities above the modification threshold. The permanent photo-induced changes can be used for direct fabrication of optical waveguides using single scan writing techniques. Changes to the localized glass network structure that produce positive changes in the refractive index of zinc phosphate glasses upon femtosecond laser irradiation have been studied using scanning confocal micro-Raman and fluorescence spectroscop

    Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited]

    Get PDF
    We have studied the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification in a series of Er-Yb doped and undoped zinc phosphate glasses. White light microscopy and waveguide experiments are used together with Raman and fluorescence spectroscopy to characterize the structural changes. The correlation between Raman peak shifts and fluorescence from phosphorus–oxygen hole center (POHC) defects indicates that fs-laser writing results in a depolymerization of the phosphate glass network. The results also show that the exact glass composition should be taken into account when fabricating waveguide devices in phosphate glasses, in order to both expand the fs-laser processing conditions and maximize favorable morphological changes for 3-D photonic device

    The Influence of Ni-Coated TiC on Laser-Deposited IN625 Metal Matrix Composites

    Get PDF
    IN625 Ni-based metal matrix composites (MMCs) components were deposited using Laser Engineered Net-Shaping (LENS) with Ni-coated and uncoated TiC reinforcement particles to provide insight into the influence of interfaces on MMCs. The microstructures and spatial distribution of TiC particles in the deposited MMCs were characterized, and the mechanical responses were investigated. The results demonstrate that the flowability of the mixed powders, the integrity of the interface between the matrix and the TiC particles, the interaction between the laser beam and the TiC ceramic particles, and the mechanical properties of the LENS-deposited MMCs were all effectively improved by using Ni-coated TiC particles
    corecore