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Abstract: We report the relationship between the initial glass composition 

and the resulting microstructural changes after direct femtosecond laser 

waveguide writing with a 1 kHz repetition rate Ti:sapphire laser system. A 

zinc polyphosphate glass composition with an oxygen to phosphorus ratio of 

3.25 has demonstrated positive refractive index changes induced inside the 

focal volume of a focusing microscope objective for laser pulse energies 

that can achieve intensities above the modification threshold. The 

permanent photo-induced changes can be used for direct fabrication of 

optical waveguides using single scan writing techniques. Changes to the 

localized glass network structure that produce positive changes in the 

refractive index of zinc phosphate glasses upon femtosecond laser 

irradiation have been studied using scanning confocal micro-Raman and 

fluorescence spectroscopy. 

© 2011 Optical Society of America 

OCIS codes: (320.2250) Femtosecond phenomena; (220.4000) Microstructure fabrication; 

(230.7370) Waveguides; (160.2750) Glass and other amorphous materials. 
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1. Introduction 

Femtosecond lasers pulses in the near IR, when focused inside transparent glass substrates, 

can achieve high enough intensities to give rise to permanent modification of the glass 

structure. Such photo-induced modifications often result in a change in the refractive index of 

the glass that is highly confined to the focal volume of a high NA lens or microscope 

objective [1,2]. By translating the glass with respect to the focal volume it is possible to 

fabricate 3-D subsurface optical waveguides with high spatial precision in a variety of optical 

materials [3–7]. 

Phosphate glasses can incorporate large concentrations of rare earth ions [8], making them 

an ideal host materials for fabricating compact high-gain waveguide lasers and amplifiers that 

operate in the C-band [9,10]. However, many phosphate glasses will typically exhibit or favor 

negative changes to the index of refraction inside the fs-laser irradiated region [11,12]. As a 

consequence, high quality single-mode waveguides cannot be easily fabricated by direct 

waveguide writing techniques. Femtosecond laser writing in commercially available 

phosphate glasses, such as Schott IOG-1 or Kigre Er-Yb QX and MM2a glass, has 

demonstrated that both the magnitude and the sign of the induced net refractive index change 

inside the focal volume is highly sensitive to the fs-laser writing conditions [13–19]. The 

resulting micro-structure changes, induced by femtosecond laser inscription, result in complex 

refractive index profiles that can be used for waveguiding only when very specific 

combinations of laser processing parameters are used, thus limiting the effectiveness of these 

glasses as substrates for direct fs-laser waveguide writing. Progress in fs-laser 

#141431 - $15.00 USD Received 24 Jan 2011; revised 21 Feb 2011; accepted 22 Feb 2011; published 11 Apr 2011
(C) 2011 OSA 25 April 2011 / Vol. 19, No. 9 / OPTICS EXPRESS 7930



micromachining can be greatly enhanced by utilizing phosphate glass compositions that can 

yield good waveguides when fabricated under a wider range of laser processing conditions. 

While much attention has focused on the writing techniques used to achieve positive 

changes to the refractive index, the dependence on the initial glass composition has often been 

overlooked. It is important to understand the relationships between the initial composition of 

simple phosphate glasses and the structural changes that result from fs-laser modification. To 

date, no study has been performed which has systematically examined how changes to the 

initial glass structure effect the resulting changes after fs-laser modification. Zinc phosphate 

glasses are excellent candidates to examine both the fundamental relationships of this 

interaction as well as provide a suitable glass structure to investigate the desired positive 

changes to the refractive index. Zinc phosphate glasses are excellent optical materials to study 

this phenomenon due to three important characteristics: 

(i) Zinc phosphate glasses have structures based on linkages between corner-shared Zn- 

and P-tetrahedra. Fused silica glass also has a tetrahedral network and the resulting 

open structures are believed to be associated with anomalous temperature-

dependence of a variety of properties, including thermal expansion, acoustic 

absorption, and sound velocity [20–24], for both fused silica and the zinc phosphate 

glasses. 

(ii) Zinc phosphate glasses can be prepared in a wide range of compositions to support 

studies of the relationships between glass structures and properties [21]. 

(iii) Due to its large glass forming range beyond the metaphosphate composition, the zinc 

phosphate glass system is one of only a few binary phosphate glass systems that 

provides an open phosphate chain-like structure that is capable of incorporating high 

concentrations of rare earth ions without concentration quenching effects as a result 

of ion clustering [8,21]. 

In this paper we will show that variations in glass composition within the metaphosphate and 

polyphosphate regime, 3.5  [O]/[P]  3.0, have a direct effect on the glass network structure 

and initial glass properties resulting in different responses to femtosecond laser waveguide 

writing. The observed micro-structure, refractive index, and guiding properties of the 

waveguides indicate that the initial glass network affects the resulting morphological changes 

to the glass after modification by femtosecond pulses. Waveguides fabricated in glasses with 

[O]/[P] ratio of 3.25, at fs-laser pulse fluences below 10 J/cm
2
, demonstrate a single mode 

guiding region in the center of the induced modification under longitudinal focusing 

conditions. Local changes to the both the glass structure and the guiding properties inside the 

laser-irradiated area are investigated through the use of scanning Raman and fluorescence 

microscopy. 

2. Experiment 

In this study we have induced modifications in several different metaphosphate ([O]/[P] = 3.0) 

and polyphosphate (3.0 < [O]/[P]  3.5) glasses. Binary zinc phosphate glasses with nominal 

ZnO contents between 50 and 65 mol% were prepared using reagent grade ZnO (zinc oxide), 

and NH4H2PO4 (ammonium phosphate). A zinc aluminophopshate glass with a nominal 

metaphosphate composition (30ZnO-10Al2O3-60P2O5) was prepared from a mixture of ZnO, 

crystalline Al(PO3)3 and NH4H2PO4. In each batch, raw materials were thoroughly mixed and 

calcined at 500°C for 12 hours. The glasses were first melted in alumina crucibles at 1000°C 

for two hours and then rapidly quenched to form glass frit. The fritted glass was ground in a 

mortar and pestle and the powders were remelted in a Pt crucible for one hour at 1050°C to 

form a homogeneous melt. The melts were poured into steel molds, cooled and then annealed 

for 2 hours near Tg. Annealed samples were polished using SiC paper and diamond pastes to a 

finish of 0.25 microns. 
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In each polished glass sample, a series of waveguides was fabricated using a 

regeneratively amplified Ti:sapphire 1 kHz, 180 fs laser system (Merlin-Spitfire Spectra 

Physics) with pulse energies ranging from 0.2 μJ – 4 μJ. The femtosecond laser beam was 

directed through a 20x (0.40 NA) microscope and the glass sample was translated parallel to 

the femtosecond laser beam at a constant scan speed of 50 μm/s. Near field and far field 

waveguide profiles, as well as white light images and insertion losses were measured after 

waveguides were written. White light images of the modified areas were collected both 

perpendicular to, and normal to, the fs-laser beam propagation direction using a 20x (0.40 

NA) objective and a CCD camera. A 10x (0.21 NA) objective was used to focus 660 nm laser 

light into the input waveguide facet, and a 10x (0.20 NA) objective was focused at the output 

facet in order to characterize the guiding properties. Mode profiles of the transmitted 660 nm 

laser light were obtained by imaging the near-field intensity at the output facet of the 

waveguide using a CCD camera. Positive refractive index changes were calculated by 

measuring the numerical aperture of the waveguide. 

Confocal Raman and fluorescence spectroscopy was performed on the fs-laser induced 

modifications using a 473 nm cw laser (Laserglow.com Limited LRS-473). The 473 nm 

excitation beam was directed through a 50x (0.55 NA) objective using a 50/50 broadband 

dielectric beam splitter and focused into the glass sample, which was placed on a Newport 3-

axis xyz motorized stage. Backscatter signals produced by the 473 nm laser excitation were 

collected by the same 50x objective and directed through the 50/50 beam splitter. A 50 μm 

diameter pinhole was used to ensure Raman signals were only collected from the focal 

volume of the objective. An Oriel 500 spectrometer in conjunction with a CCD camera (LN-

CCD Princeton Instruments) was used to collect spectral signals that passed through the 

pinhole setup. The spectrometer was used with a 1200 grooves/mm grating to collect Raman 

signals, and a 600 grooves/mm grating to collect fluorescence signals. 

3. Results and discussion 

3.1. Physical changes to fs-laser modified zinc phosphate glass 

Figure 1(a) and 1(b) show white light microscope images of waveguides created by the 

femtosecond laser direct-write technique applied to the five different zinc phosphate glasses. 

Figure 1(c) shows the near field images from waveguiding experiments in the respective 

glasses. These microscopic images and waveguiding experiments showed significant 

differences in the responses of the five phosphate glasses to the femtosecond laser. For 

example, the waveguiding experiments on the laser-modified zinc phosphate glasses usually 

demonstrated negative changes in the index of refraction inside the fs-laser irradiated region, 

resulting in poor guiding characteristics (Fig. 1(c)). The exception was the 60ZnO-40P2O5 

polyphosphate sample (Fig. 1(4c)) where a positive change in the refractive index within the 

focal volume was found. Transverse microscope images of the modified regions showed 

visible damage to many of the glasses after irradiation, (Fig. 1(1a)–1(3a)), even for 

comparatively low fs-laser pulse fluences (below 10 J/cm
2
). However, the 60ZnO-40P2O5 and 

65ZnO-35P2O5 polyphosphate glasses did not exhibit this same behavior. The 65ZnO-35P2O5 

polyphosphate glass sample demonstrated relatively smooth modification to the glass for low 

fs-laser fluences in comparison to many of the other glass samples (Fig. 1(5a)). The observed 

refractive index changes, however, were not optimal for waveguiding (Fig. 1(5b)). In contrast, 

the 60ZnO-40P2O5 polyphosphate glass yielded good waveguiding characteristics and smooth 

modification for the same low energy fs-laser writing parameters (Fig. 1(4a) and 1(4c)). The 

obvious differences in response to fs-laser exposure of the 60ZnO-40P2O5 glass compared to 

that of the other zinc phosphate glass compositions, indicate an important role for the initial 

phosphate glass composition (or structure) in the development of high quality waveguides. 
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Fig. 1. Microscope images of fs-modified zinc phosphate glass written with fs-laser fluences of 

8 J/cm2 (1) 30ZnO-10Al2O3-60P2O5 glass (2) 50ZnO-50P2O5 glass (3) 55ZnO-45P2O5 glass (4) 

60ZnO-40P2O5 glass (5) 65ZnO-35P2O5; (a) white light images of the modification along the 
waveguide direction (b) Transmission white light images of the modification cross section (c) 

660 nm transmission near field images (d) Waveguide near field output guiding profile for 

60ZnO-40P2O5 glass (e) Waveguide far field output profile for 60ZnO-40P2O5 glass. 

Detailed analysis of the near field and far field waveguide output profiles, for the modified 

60ZnO-40P2O5 glass, showed single mode guiding characteristics using 660 nm laser light 

(Fig. 1(d), Fig. 1(e)), with a maximum measured Δn of 5x10
4

 and a total overall insertion 

loss of 6.69 dB (with an estimated coupling loss of 2 dB), over a waveguide length of 3 mm. 

The high losses measured in this experiment are most likely caused by observed 

inhomogeneities in the bulk glass sample that were present before fs-laser waveguide writing. 

Such inhomogeneities can have a detrimental effect on the light propagation inside the 

waveguide as well as on the overall manufacturing precision of the waveguides due to 

deviations in the fs-laser focusing conditions. Positive refractive index changes inside the 

focal volume were observed for fs-laser fluences between 2 J/cm
2
 (threshold for modification) 

and 10 J/cm
2
. For fs-laser fluences above 10 J/cm

2
, the irradiated region exhibited visible 

material damage and inhomogeneous changes for all the glasses used in this study, including 

the 60ZnO-40P2O5 glass. 

3.2. Confocal Raman and fluorescence microscopy 

Raman spectroscopy provides information about the molecular-level structure of phosphate 

glasses. Figure 2 shows the Raman spectra collected from the five zinc phosphate glasses 

prior to fs-laser irradiation. The spectra are similar to those reported in the literature [21] and 

reveal systematic changes in the phosphate structural network with changes in composition. 

The peak centered near 1200 cm
1

 is assigned to the symmetric stretching modes, (PO2)sym, of 
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the non-bridging P-O bonds on tetrahedra that link two neighboring tetrahedra (Q
2
 tetrahedra) 

and the peak centered near 1000 cm
1

 is assigned to the symmetric stretching modes, (PO3)sym, 

 

Fig. 2. Raman spectra of unmodified bulk phosphate glasses (1) 30ZnO-10Al2O3-60P2O5 glass 

(2) 50ZnO-50P2O5 glass (3) 55ZnO-45P2O5 glass (4) 60ZnO-40P2O5 glass (5) 65ZnO-35P2O5; 
(a) in chain PO2 and OPO bending (b) (POP) symmetric stretch (bridging oxygen), Q2 species 

(c) P-O stretch, Q1 chain terminator (d) (PO2) symmetric stretch (non-bridging oxygen), Q2 
species. 

of P-O bonds on tetrahedra that link one other tetrahedron (Q
1
). With an increase in the 

[O]/[P] ratio, the spectra reveal that Q
2
 tetrahedra that form long chains in metaphosphate 

glasses ([O]/[P] = 3.0) are replaced by Q
1
 tetrahedra that terminate progressively shorter 

chains in the polyphosphate compositions. 

In order to understand the atomic scale changes to the initial glass structure, confocal 

Raman and fluorescence experiments were performed on all fs-laser modified zinc phosphate 

glass samples. The results demonstrated systematic changes in the Raman spectra of the 

modified glass. In the modified regions of glasses where no favorable waveguiding structures 

could be produced, the 1209 cm
1

 Raman peak associated with P-O bonds on Q
2
 tetrahedra 

showed a consistent shift to lower wavenumbers (Fig. 3(a)). We measured the shift by 

carefully scanning over the modified cross section in 1.5 μm step sizes and recording the 

maximum shift, relative to the bulk material, that typically occurred at the very center of the 

modified area (Fig. 3(b)). The magnitude of the maximum shift of the modified zinc 

phosphate glass not only varied from sample to sample (Fig. 4(b) below), but it also depended 

on the amount of fs-laser energy deposited into the glass (Fig. 3(a)). 

Popovic et al. have shown that the positions of Raman peaks from crystalline inorganic 

phosphates correlates with the P-O bond length, where generally longer bonds are associated 

with lower wavenumbers [25]. If a similar correlation exists for the modified zinc phosphate 

glasses, then the decrease in the (PO2)sym peak position of the modified glasses shown in 

Fig. 3 can be attributed to an expansion of the glass network in the fs-laser irradiated region, 

resulting in longer P-O bonds and correspondingly lower refractive index and density. This 

behavior is similar to what has been observed for commercial phosphate glasses examined in 

previous experiments [15]. For commercial phosphate glasses we have correlated the negative 

Raman shifts with negative index changes. 

For the 60ZnO-40P2O5 glass, however, no measurable shift of the (PO2)sym Raman peak 

was observed within the modified area for any fs-laser fluences used. This indicates that the 

structure of this glass has not been altered in the same way as those with lower ZnO contents, 

consistent with the increase in refractive index and positive waveguiding performance. The 
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peak at 1209cm
1

 could not be distinguished in the Raman spectrum of the 65ZnO-35P2O5 

glass which has relatively few Q
2
 tetrahedra (about 15%) [21], thus making it more difficult to 

characterize in the same manner as the other glass samples used in this experiment. 

 

Fig. 3. (Color online) (a) Spectral profile of the 1209 cm1 Raman mode of modified and 

unmodified 30ZnO-10Al2O3-60P2O5 glass for various fs-laser fluences (b) Color map of shifts 

in the relative spectral position of the 1209 cm1 Raman peak as a function of the spatial 
position for 30ZnO-10Al2O3-60P2O5 glass modified with a fs-laser fluence of 43 J/cm2. 

 

Fig. 4. (Color online) (a) Fluorescence spectra of modified and unmodified 30ZnO-10Al2O3-

60P2O5 glass for various fs-laser fluences (b) Maximum change in intensity of POHC 

fluorescence as a function of the maximum 1209 cm1 Raman mode shift for various glass 
compositions modified with a fs-laser fluence of 43 J/cm2. 

In addition to Raman spectroscopy we have also measured the fluorescence spectra of fs-

laser modified zinc phosphate glass. At wavelengths beyond 535 nm, a very broad and 

noticeable photoluminescence peak centered at 630 nm was observed (Fig. 4(a)) within the 
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modified volume of phosphate glasses with [O]/[P] < 3.25. This fluorescence peak has been 

attributed to the presence of fs-laser induced POHC (phosphorus-oxygen-hole-center) defects. 

This fluorescence is typically indicative of a damage of the phosphate network as a result of 

laser irradiation [26]. 

The overall fluorescence intensity, and thus concentration of the induced POHC defects, 

also depends on the initial glass composition. Figure 4(b) shows that glasses with greater 

fluorescence intensities from laser modified regions possess greater shifts in the (PO2)sym 

Raman peak frequency. This relationship indicates that the mechanism of glass network 

expansion caused by the absorption of fs-laser pulses results in broken P-O bonds and a lower 

glass density. It also shows the distinctly different response of the 60ZnO-40P2O5 glass to the 

fs-laser, compared to glasses with lower [O]/[P] ratios. No significant POHC fluorescence or 

significant Raman shift was measured from the 60ZnO-40P2O5 polyphosphate glass 

composition, even under high energy writing conditions where 43 J/cm
2
 fs-laser fluence was 

used. The measured relationship at the molecular level is consistent with the observed 

behavior at the microscopic scale where lower refractive index changes to the glass persisted 

for all but the 60ZnO-40P2O5 glass composition (Fig. 1(c)). However, it is worth noting that 

the results for the 65ZnO-35P2O5 are not conclusive; in fact, no significant Raman changes or 

POHC fluorescence signals have been observed within the modified region of this phosphate 

glass composition. While the modified glass morphology suggests that the changes in the 

refractive index are negative, such an observation is only qualitative. Thus, it is possible that 

the induced index change is positive, albeit a low positive change that demonstrates poor 

waveguiding characteristics. 

Micro-Raman measurements specifically performed on the waveguides in the 60ZnO-

40P2O5 glass sample did not exhibit any measurable positive shifts in the 1209 cm
1

 Raman 

peak that would indicate a contraction of the phosphate network. Other refractive index 

mechanisms, such as changes in the network polarizability by an increased proportion of Q
1
 

tetrahedra, previously reported in Yb doped phosphate glass by Little et al. [27], were not 

observed in our analysis. It is possible that changes may result from photo-induced stresses 

that may not affect the Raman peak positions [15]. While the mechanism responsible for an 

increase in refractive index remains the subject of further study, it is clear that for most 

phosphate glass compositions studied in this experiment, a decrease in refractive index caused 

by an expansion of the network is the dominant response mechanism. 

4. Conclusions 

In this work, we have demonstrated that direct femtosecond laser irradiation of zinc 

polyphosphate glass with an oxygen to phosphorus ratio of 3.25 (60ZnO-40P2O5 glass) 

produces a positive refractive index change, as much as 5x10
4

, that can be used to fabricate 

optical waveguides. Such waveguides have been created under longitudinal focusing 

geometries using a 1 kHz, 180 fs laser system with laser pulse fluences above the measured 

modification threshold of 2 J/cm
2
 and below the observed glass damage threshold of 10 J/cm

2
. 

The positive refractive index changes reported are symmetric and confined to within the focal 

volume of the 20x (0.40 NA) fs-laser writing objective. 

We have observed that femtosecond laser waveguide writing in phosphate glass highly 

depends on the initial glass composition. It is a very important variable that cannot be 

overlooked when fabricating high quality optical waveguides inside phosphate glasses. The 

changes to the network structure can be measured using confocal fluorescence and Raman 

microscopy. Most phosphate glass compositions have molecular-level structures that expand 

under the femtosecond laser and produce POHC defects, making them less practical for laser-

written waveguides. However, the 60ZnO-40P2O5 glass has a structure that appears to modify 

in a way that produces a positive refractive index change, and that does not generate POHC 

defects under the femtosecond laser irradiation, making this glass an attractive material for 

waveguiding applications. 
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