1,055 research outputs found

    Terpenoid-Induced Feeding Deterrence and Antennal Response of Honey Bees

    Get PDF
    Multiple interacting stressors negatively affect the survival and productivity of managed honey bee colonies. Pesticides remain a primary concern for beekeepers, as even sublethal exposures can reduce bee immunocompetence, impair navigation, and reduce social communication. Pollinator protection focuses on pesticide application guidelines; however, a more active protection strategy is needed. One possible approach is the use of feeding deterrents that can be delivered as an additive during pesticide application. The goal of this study was to validate a laboratory assay designed to rapidly screen compounds for behavioral changes related to feeding or feeding deterrence. The results of this investigation demonstrated that the synthetic Nasonov pheromone and its terpenoid constituents citral, nerol, and geraniol could alter feeding behavior in a laboratory assay. Additionally, electroantennogram assays revealed that these terpenoids elicited some response in the antennae; however, only a synthetic Nasonov pheromone, citral, and geraniol elicited responses that differed significantly from control and vehicle detections

    Sublethal Effects of the Insecticide Pyrifluquinazon on the European Honey Bee (Hymenoptera: Apidae)

    Get PDF
    Pyrifluquinazon (PQZ) is an Insecticide Resistance Action Committee (IRAC) Group 9 insecticide that has recently been registered for use in the United States for control of soft-bodied sucking insect pests. Although it has been classified as practically nontoxic to honey bees, Apis mellifera L. (Hymenoptera: Apidae), based on acute contact bioassays, additional information on sublethal effects of this insecticide on honey bees is lacking. Using a combination of laboratory assays with video movement tracking software and near-field evaluations of colonies foraging in a high-tunnel experiment, we determined that, when fed PQZ at a concentration of 84 mg active ingredient (ai)/liter (= ppm) in sugar water, a reduction in overall movement by the foraging worker bees was observed. However, when provided with honey reserves in the hive, honey bees rejected the PQZ-treated sugar water. These results indicate that, if ingested at levels of 84 mg ai/liter, PQZ could have a negative effect on honey bee behavior; however, honey bee workers appear to be able to detect the presence of PQZ in their food and reject it

    Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, \u3ci\u3eApis mellifera\u3c/i\u3e (L.)

    Get PDF
    Background: The loss of honey bee colonies is a nationally recognized problem that demands attention from both the scientific community and the beekeeping industry. One outstanding threat is the unintended exposure of these pollinators to agricultural pesticides. Anthranilic diamides, such as chlorantraniliprole, are registered for use in stone and pome fruits, vegetables, turf, and grains. There are few publicly available studies that provide an analysis of chlorantraniliprole effects on the survivorship and locomotion activity of beneficial, pollinating insects such as honey bees. The data gathered in this study provide the acute toxicity, 30-day survivorship, and locomotor activity of honey bees exposed to technical-grade chlorantraniliprole and three formulated products with chlorantraniliprole as the active ingredient. Results: Neither the technical-grade nor the formulated products of chlorantraniliprole were acutely toxic to honey bees following 4 or 72h treatments at the tested concentrations. A 4 h treatment of technical-grade and formulated chlorantraniliprole did not significantly affect the 30-day survivorship, although significantly higher mortality was observed after 30 days for bees receiving a 72 h treatment of technical-grade chlorantraniliprole and two formulated products. The locomotion activity, or total walking distance, of bees receiving a 4 h treatment of one chlorantraniliprole formulation was significantly reduced, with these individuals recovering their normal locomotion activity at 48 h post exposure. Conversely, there was observed lethargic behavior and significantly reduced walking distances for bees provided with a 72 h treatment of technical-grade chlorantraniliprole and each formulated product. Conclusion: This study provides evidence for the effect of long-term exposure of chlorantraniliprole on the survivorship and locomotor activity of honey bees. Bees receiving a more field-relevant short-term exposure survived and moved similarly to untreated bees, reiterating the relative safety of chlorantraniliprole exposure to adult honey bees at recommended label concentrations

    ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees

    Get PDF
    Honey bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (KATP) channels. We have shown that treatment with the KATP channel agonist pinacidil increases survival of bees while decreasing viral replication following infection with FHV, whereas treatment with the KATP channel antagonist tolbutamide decreases survival and increases viral replication. Our results suggest that KATP channels provide a significant link between cellular metabolism and the antiviral immune response in bees

    Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes

    Get PDF
    Managed honey bees (Apis mellifera L.) and wild bees provide critical ecological services that shape and sustain natural, agricultural, and urban landscapes. In recent years, declines in bee populations have highlighted the importance of the pollination services they provide and the need for more research into the reasons for global bee losses. Several stressors cause declining populations of managed and wild bee species such as habitat degradation, pesticide exposure, and pathogens. Viruses, which have been implicated as a key stressor, are able to infect a wide range of species and can be transmitted both intra- and inter-specifically from infected bee species to uninfected bee species via vertical (from parent to offspring) and/or horizontal (between individuals via direct or indirect contact) transmission. To explore how viruses spread both intra- and inter-specifically within a community, we examined the impact of management, landscape type, and bee species on the transmission of four common viruses in Nebraska: Deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), Black queen cell virus (BQCV), and Sacbrood virus (SBV). Results indicated the prevalence of viruses is significantly affected (P \u3c 0.005) by bee species, virus type, and season, but not by landscape or year (P = 0.290 and 0.065 respectively). The higher prevalence of DWV detected across bee species (10.4% on Apis mellifera, 5.3% on Bombus impatiens, 6.1% on Bombus griseocollis, and 22.44% on Halictus ligatus) and seasons (10.8% in earlymid summer and 11.4% in late summer) may indicate a higher risk of interspecific transmission of DWV. However, IAPV was predominately detected in Halictus ligatus (20.7%) and in late season collections (28.1%), which may suggest species-specific susceptibility and seasonal trends in infection rates associated with different virus types. However, there were limited detections of SBV and BQCV in bees collected during both sampling periods, indicating SBV and BQCV may be less prevalent among bee communities in this area

    Interactions between pesticides and pathogen susceptibility in honey bees

    Get PDF
    There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level

    Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes

    Get PDF
    Managed honey bees (Apis mellifera L.) and wild bees provide critical ecological services that shape and sustain natural, agricultural, and urban landscapes. In recent years, declines in bee populations have highlighted the importance of the pollination services they provide and the need for more research into the reasons for global bee losses. Several stressors cause declining populations of managed and wild bee species such as habitat degradation, pesticide exposure, and pathogens. Viruses, which have been implicated as a key stressor, are able to infect a wide range of species and can be transmitted both intra- and inter-specifically from infected bee species to uninfected bee species via vertical (from parent to offspring) and/or horizontal (between individuals via direct or indirect contact) transmission. To explore how viruses spread both intra- and inter-specifically within a community, we examined the impact of management, landscape type, and bee species on the transmission of four common viruses in Nebraska: Deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), Black queen cell virus (BQCV), and Sacbrood virus (SBV). Results indicated the prevalence of viruses is significantly affected (P \u3c 0.005) by bee species, virus type, and season, but not by landscape or year (P = 0.290 and 0.065 respectively). The higher prevalence of DWV detected across bee species (10.4% on Apis mellifera, 5.3% on Bombus impatiens, 6.1% on Bombus griseocollis, and 22.44% on Halictus ligatus) and seasons (10.8% in earlymid summer and 11.4% in late summer) may indicate a higher risk of interspecific transmission of DWV. However, IAPV was predominately detected in Halictus ligatus (20.7%) and in late season collections (28.1%), which may suggest species-specific susceptibility and seasonal trends in infection rates associated with different virus types. However, there were limited detections of SBV and BQCV in bees collected during both sampling periods, indicating SBV and BQCV may be less prevalent among bee communities in this area

    Toxicological analysis of stilbenes against the fall armyworm, \u3ci\u3eSpodoptera frugiperda\u3c/i\u3e

    Get PDF
    The fall armyworm (FAW), Spodoptera frugiperda, is a global pest of multiple economically important row crops and the development of resistance to commercially available insecticidal classes has inhibited FAW control. Thus, there is a need to identify chemical scaffolds that can provide inspiration for the development of novel insecticides for FAW management. This study aimed to assess the sensitivity of central neurons and susceptibility of FAW to chloride channel modulators to establish a platform for repurposing existing insecticides or designing new chemicals capable of controlling FAW. Potency of select chloride channel modulators were initially studied against FAW central neuron firing rate and rank order of potency was determined to be fipronil \u3e lindane \u3e Z-stilbene \u3e DIDS \u3e GABA \u3e E-stilbene. Toxicity bioassays identified fipronil and lindane as the two most toxic modulators studied with topical LD50\u27s of 41 and 75 ng/mg of caterpillar, respectively. Interestingly, Z-stilbene was toxic at 300 ng/mg of caterpillar, but no toxicity was observed with DIDS or E-stilbene. The significant shift in potency between stilbene isomers indicates structure-activity relationships between stilbene chemistry and the binding site in FAW may exist. The data presented in this study defines the potency of select chloride channel modulators to FAW neural activity and survivorship to establish a platform for development of novel chemical agents to control FAW populations. Although stilbenes may hold promise for insecticide development, the low toxicity of the scaffolds tested in this study dampen enthusiasm for their development into FAW specific insecticides

    Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies

    Get PDF
    Declines in managed honey bee populations are multifactorial but closely associated with reduced virus immunocompetence and thus, mechanisms to enhance immune function are likely to reduce viral infection rates and increase colony viability. However, gaps in knowledge regarding physiological mechanisms or ‘druggable’ target sites to enhance bee immunocompetence has prevented therapeutics development to reduce virus infection. Our data bridge this knowledge gap by identifying ATP-sensitive inward rectifier potassium ( KATP) channels as a pharmacologically tractable target for reducing virus-mediated mortality and viral replication in bees, as well as increasing an aspect of colony-level immunity. Bees infected with Israeli acute paralysis virus and provided KATP channel activators had similar mortality rates as uninfected bees. Furthermore, we show that generation of reactive oxygen species (ROS) and regulation of ROS concentrations through pharmacological activation of KATP channels can stimulate antiviral responses, highlighting a functional framework for physiological regulation of the bee immune system. Next, we tested the influence of pharmacological activation of KATP channels on infection of 6 viruses at the colony level in the field. Data strongly support that KATP channels are a field-relevant target site as colonies treated with pinacidil, a KATP channel activator, had reduced titers of seven bee-relevant viruses by up to 75-fold and reduced them to levels comparable to non-inoculated colonies. Together, these data indicate a functional linkage between KATP channels, ROS, and antiviral defense mechanisms in bees and define a toxicologically relevant pathway that can be used for novel therapeutics development to enhance bee health and colony sustainability in the field

    ATP-sensitive inwardly rectifying potassium channel modulators alter cardiac function in honey bees

    Get PDF
    ATP-sensitive inwardly rectifying potassium (KATP) channels couple cellular metabolism to the membrane potential of the cell and play an important role in a variety of tissue types, including the insect dorsal vessel, making them a subject of interest not only for understanding invertebrate physiology, but also as a potential target for novel insecticides. Most of what is known about these ion channels is the result of work performed in mammalian systems, with insect studies being limited to only a few species and physiological systems. The goal of this study was to investigate the role that KATP channels play in regulating cardiac function in a model social insect, the honey bee (Apis mellifera), by examining the effects that modulators of these ion channels have on heart rate. Heart rate decreased in a concentration-dependent manner, relative to controls, with the application of the KATP channel antagonist tolbutamide and KATP channel blockers barium and magnesium, whereas heart rate increased with the application of a low concentration of the KATP channel agonist pinacidil, but decreased at higher concentrations. Furthermore, pretreatment with barium magnified the effects of tolbutamide treatment and eliminated the effects of pinacidil treatment at select concentrations. The data presented here confirm a role for KATP channels in the regulation of honey bee dorsal vessel contractions and provide insight into the underlying physiology that governs the regulation of bee cardiac function
    • …
    corecore