31 research outputs found

    Parametric Nonlinear Optics with Layered Materials and Related Heterostructures

    Get PDF
    Nonlinear optics is of crucial importance in several fields of science and technology with applications in frequency conversion, entangled‐photon generation, self‐referencing of frequency combs, crystal characterization, sensing, and ultra‐short light pulse generation and characterization. In recent years, layered materials and related heterostructures have attracted huge attention in this field, due to their huge nonlinear optical susceptibilities, their ease of integration on photonic platforms, and their 2D nature which relaxes the phase‐matching constraints and thus offers a practically unlimited bandwidth for parametric nonlinear processes. In this review the most recent advances in this field, highlighting their importance and impact both for fundamental and technological aspects, are reported and explained, and an outlook on future research directions for nonlinear optics with atomically thin materials is provided

    Hyperspectral microscopy of two-dimensional semiconductors

    Get PDF
    Here we present an interferometric wide field hyperspectral microscope based on a common-path birefringent interferometer with translating wedges, to measure photoluminescence emission from two-dimensional semiconductors. We show diffraction-limited hyperspectral photoluminescence microscopy from two-dimensional materials across millimeter areas, proving that our hyperspectral microscope is a compact, stable and fast tool to characterize the optical properties and the morphology of 2D materials across ultralarge areas

    Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors

    Full text link
    Nonlinear frequency conversion provides essential tools for light generation, photon entanglement, and manipulation. Transition metal dichalcogenides (TMDs) possess huge nonlinear susceptibilities and 3R-stacked TMD crystals further combine broken inversion symmetry and aligned layering, representing ideal candidates to boost the nonlinear optical gain with minimal footprint. Here, we report on the efficient frequency conversion of 3R-MoS2, revealing the evolution of its exceptional second-order nonlinear processes along the ordinary (in-plane) and extraordinary (out-of-plane) directions. By measuring second harmonic generation (SHG) of 3R-MoS2 with various thickness - from monolayer (~0.65 nm) to bulk (~1 {\mu}m) - we present the first measurement of the in-plane SHG coherence length (~530 nm) at 1520 nm and achieve record nonlinear optical enhancement from a van der Waals material, >10^4 stronger than a monolayer. It is found that 3R-MoS2 slabs exhibit similar conversion efficiencies of lithium niobate, but within propagation lengths >100-fold shorter at telecom wavelengths. Furthermore, along the extraordinary axis, we achieve broadly tunable SHG from 3R-MoS2 in a waveguide geometry, revealing the coherence length in such structure for the first time. We characterize the full refractive index spectrum and quantify both birefringence components in anisotropic 3R-MoS2 crystals with near-field nano-imaging. Empowered with these data we assess the intrinsic limits of the conversion efficiency and nonlinear optical processes in 3R-MoS2 attainable in waveguide geometries. Our analysis highlights the potential of 3R-stacked TMDs for integrated photonics, providing critical parameters for designing highly efficient on-chip nonlinear optical devices including periodically poled structures, resonators, compact optical parametric oscillators and amplifiers, and optical quantum circuits

    Exciton-phonon coupling strength in single-layer MoSe2 at room temperature

    Get PDF
    Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we develop two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time T, induced by the coupling between the A exciton and the A'1 optical phonon. Analysis of two-dimensional beating maps combined with simulations provides the exciton-phonon coupling. The Huang-Rhys factor of ~1 is larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems with a spatial resolution ~260 nm, and will provide design-relevant parameters for the development of optoelectronic devices

    Time-Dependent Screening Explains the Ultrafast Excitonic Signal Rise in 2D Semiconductors

    Get PDF
    We calculate the time evolution of the transient reflection signal in an MoS2 monolayer on a SiO2/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron–phonon and hole–phonon scattering lead to a gradual relaxation of the carriers toward small Active Excitonic Regions around K, enhancing the dielectric screening. The accompanying time-dependent band gap renormalization dominates over Pauli blocking and the excitonic binding energy renormalization. This explains the delayed buildup of the transient reflection signal of the probe pulse, in excellent agreement with recent experimental data. Our results show that the observed delay is not a unique signature of an exciton formation process but rather caused by coordinated carrier dynamics and its influence on the screening

    Strong Coupling of Coherent Phonons to Excitons in Semiconducting Monolayer MoTe2_2

    Get PDF
    The coupling of the electron system to lattice vibrations and their time-dependent control and detection provides unique insight into the non-equilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2HH-MoTe2_2 encapsulated with hhBN using broadband optical pump-probe microscopy. The sub-40-fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to ∌\sim20% of the maximum transient signal, due to the displacive excitation of the out-of-plane A1gA_{1g} phonon. Ab-initio calculations reveal a dramatic rearrangement of the optical absorption of monolayer MoTe2_2 induced by an out-of-plane stretching and compression of the crystal lattice, consistent with an A1gA_{1g}-type oscillation. Our results highlight the extreme sensitivity of the optical properties of monolayer TMDs to small structural modifications and their manipulation with light.Comment: 27 pages, 4 figures, supporting informatio

    Broadband nonlinear optical response of monolayer MoSe2under ultrafast excitation

    Get PDF
    Due to their strong light-matter interaction, monolayer transition metal dichalcogenides (TMDs) have proven to be promising candidates for nonlinear optics and optoelectronics. Here, we characterize the nonlinear absorption of chemical vapour deposition (CVD)-grown monolayer MoSe2in the 720-810 nm wavelength range. Surprisingly, despite the presence of strong exciton resonances, monolayer MoSe2exhibits a uniform modulation depth of ∌80 ± 3% and a saturation intensity of ∌2.5 ± 0.4 MW/cm2. In addition, pump-probe spectroscopy is performed to confirm the saturable absorption and reveal the photocarrier relaxation dynamics over hundreds of picoseconds. Our results unravel the unique broadband nonlinear absorptive behavior of monolayer MoSe2under ultrafast excitation and highlight the potential of using monolayer TMDs as broadband ultrafast optical switches with customizable saturable absorption characteristics

    Exciton–phonon coupling strength in single-layer MoSe 2 at room temperature

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)); doi: https://doi.org/10.13039/100011199; Grant(s): 319277Abstract: Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton–phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton–phonon coupling strength has not been measured at room temperature. Here, we use two-dimensional micro-spectroscopy to determine exciton–phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time induced by the coupling between A excitons and Aâ€Č1 optical phonons. Analysis of beating maps combined with simulations provides the exciton–phonon coupling. We get a Huang–Rhys factor ~1, larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton–phonon coupling also in other heterogeneous semiconducting systems, with a spatial resolution ~260 nm, and provides design-relevant parameters for the development of optoelectronic devices

    Nonlinear interactions of dipolar excitons and polaritons in MoS2 bilayers

    Full text link
    Nonlinear interactions between excitons strongly coupled to light are key for accessing quantum many-body phenomena in polariton systems. Atomically-thin two-dimensional semiconductors provide an attractive platform for strong light-matter coupling owing to many controllable excitonic degrees of freedom. Among these, the recently emerged exciton hybridization opens access to unexplored excitonic species, with a promise of enhanced interactions. Here, we employ hybridized interlayer excitons (hIX) in bilayer MoS2 to achieve highly nonlinear excitonic and polaritonic effects. Such interlayer excitons possess an out-of-plane electric dipole as well as an unusually large oscillator strength allowing observation of dipolar polaritons(dipolaritons) in bilayers in optical microcavities. Compared to excitons and polaritons in MoS2 monolayers, both hIX and dipolaritons exhibit about 8 times higher nonlinearity, which is further strongly enhanced when hIX and intralayer excitons, sharing the same valence band, are excited simultaneously. This gives rise to a highly nonlinear regime which we describe theoretically by introducing a concept of hole crowding. The presented insight into many-body interactions provides new tools for accessing few-polariton quantum correlations
    corecore