39 research outputs found

    Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells.

    Get PDF
    Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function

    Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages.

    Get PDF
    Activation of liver X receptors (LXRs) with synthetic agonists promotes reverse cholesterol transport and protects against atherosclerosis in mouse models. Most synthetic LXR agonists also cause marked hypertriglyceridemia by inducing the expression of sterol regulatory element-binding protein (SREBP)1c and downstream genes that drive fatty acid biosynthesis. Recent studies demonstrated that desmosterol, an intermediate in the cholesterol biosynthetic pathway that suppresses SREBP processing by binding to SCAP, also binds and activates LXRs and is the most abundant LXR ligand in macrophage foam cells. Here we explore the potential of increasing endogenous desmosterol production or mimicking its activity as a means of inducing LXR activity while simultaneously suppressing SREBP1c-induced hypertriglyceridemia. Unexpectedly, while desmosterol strongly activated LXR target genes and suppressed SREBP pathways in mouse and human macrophages, it had almost no activity in mouse or human hepatocytes in vitro. We further demonstrate that sterol-based selective modulators of LXRs have biochemical and transcriptional properties predicted of desmosterol mimetics and selectively regulate LXR function in macrophages in vitro and in vivo. These studies thereby reveal cell-specific discrimination of endogenous and synthetic regulators of LXRs and SREBPs, providing a molecular basis for dissociation of LXR functions in macrophages from those in the liver that lead to hypertriglyceridemia

    Mannose-Containing Oligosaccharides of Non-Specific Human Secretory Immunoglobulin A Mediate Inhibition of Vibrio cholerae Biofilm Formation

    Get PDF
    The role of antigen-specific secretory IgA (SIgA) has been studied extensively, whereas there is a limited body of evidence regarding the contribution of non-specific SIgA to innate immune defenses against invading pathogens. In this study, we evaluated the effects of non-specific SIgA against infection with Vibrio cholerae O139 strain MO10 and biofilm formation. Seven day old infant mice deficient in IgA (IgA-/- mice) displayed significantly greater intestinal MO10 burden at 24 hr post-challenge when compared to IgA+/+ pups. Importantly, cross-fostering of IgA-/- pups with IgA+/+ nursing dams reversed the greater susceptibility to MO10 infection, suggesting a role for non-specific SIgA in protection against the infection. Since biofilm formation is associated with virulence of MO10, we further examined the role of human non-specific SIgA on this virulence phenotype of the pathogen. Human non-specific SIgA, in a dose-dependent fashion, significantly reduced the biofilm formation by MO10 without affecting the viability of the bacterium. Such an inhibitory effect was not induced by human serum IgA, IgG, or IgM, suggesting a role for the oligosaccharide-rich secretory component (SC) of SIgA. This was supported by the demonstration that SIgA treated with endoglycosidase H, to cleave the high-mannose containing terminal chitobiose residues, did not induce a reduction in biofilm formation by MO10. Furthermore, the addition of free mannose per se, across a wide dose range, induced significant reduction in MO10 biofilm formation. Collectively, these results suggest that mannose containing oligosacchardies within human non-specific secretory IgA can alter important virulence phenotypes of Vibrio cholerae such as biofilm formation, without affecting viability of the microorganism. Such effects may contribute significantly to innate immune defenses against invading pathogens in vivo in the gastrointestinal tract

    Tissue damage drives co-localization of NF-kappa B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages

    Get PDF
    Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGF beta, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-kappa B, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype

    Exploiting dynamic enhancer landscapes to decode macrophage and microglia phenotypes in health and disease

    No full text
    The development and functional potential of metazoan cells is dependent on combinatorial roles of transcriptional enhancers and promoters. Macrophages provide exceptionally powerful model systems for investigation of mechanisms underlying the activation of cell-specific enhancers that drive transitions in cell fate and cell state. Here, we review recent advances that have expanded appreciation of the diversity of macrophage phenotypes in health and disease, emphasizing studies of liver, adipose tissue, and brain macrophages as paradigms for other tissue macrophages and cell types. Studies of normal tissue-resident macrophages and macrophages associated with cirrhosis, obese adipose tissue, and neurodegenerative disease illustrate the major roles of tissue environment in remodeling enhancer landscapes to specify the development and functions of distinct macrophage phenotypes. We discuss the utility of quantitative analysis of environment-dependent changes in enhancer activity states as an approach to discovery of regulatory transcription factors and upstream signaling pathways

    BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation

    No full text
    The toll-like receptor (TLR) and interleukin (IL)-1 family of receptors share several signaling components, including the most upstream adapter, MyD88. We previously reported the discovery of B cell adapter for phosphoinositide 3-kinase (BCAP) as a novel toll-IL-1 receptor homology domain-containing adapter that regulates inflammatory responses downstream of TLR signaling. Here we find that BCAP plays a critical role downstream of both IL-1 and IL-18 receptors to regulate T helper (Th) 17 and Th1 cell differentiation, respectively. Absence of T cell intrinsic BCAP did not alter development of naturally arising Th1 and Th17 lineages but led to defects in differentiation to pathogenic Th17 lineage cells. Consequently, mice that lack BCAP in T cells had reduced susceptibility to experimental autoimmune encephalomyelitis. More importantly, we found that BCAP is critical for IL-1R-induced phosphoinositide 3-kinase-Akt-mechanistic target of rapamycin (mTOR) activation, and minimal inhibition of mTOR completely abrogated IL-1β-induced differentiation of pathogenic Th17 cells, mimicking BCAP deficiency. This study establishes BCAP as a critical link between IL-1R and the metabolic status of activated T cells that ultimately regulates the differentiation of inflammatory Th17 cells.</p
    corecore