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Abstract Although macrophages can be polarized to distinct phenotypes in vitro with individual

ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis,

immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses

of mouse macrophages to complex tissue damage signals and wound repair. Rather than

reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that

are activated by TLR ligands, IL4, TGFb, and damage-associated molecular patterns (DAMPS).

Unexpectedly, a complex damage signal promotes co-localization of NF-kB, Smad3, and Nrf2 at

Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization

states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated

signaling pathways to promote a wound repair phenotype.

DOI: 10.7554/eLife.13024.001

Introduction
Macrophages reside in all tissues of the body and play key roles in homeostasis, immunity, and dis-

ease. As immune cells, macrophages serve as sentinels of infection and injury and are active partici-

pants in both innate and adaptive immune responses. Detection of pathogens and tissue damage is

mediated by a diverse array of pattern recognition receptors for pathogen associated molecular pat-

terns (PAMPs) and damage associated molecular patterns (DAMPs), exemplified by the toll-like

receptors (TLRs). Ligation of TLRs initiates profound changes in gene expression that include induc-

tion of chemokines, cytokines, anti-microbial peptides, and other factors that contribute to the

innate immune response and influence adaptive immunity (Ostuni et al., 2013; Lawrence and

Natoli, 2011). This response has been extensively characterized in vitro by treating cultured macro-

phages with specific TLR ligands such as bacterial lipopolysaccharide (LPS), a potent activator of

TLR4 (Kaikkonen et al., 2013; Escoubet-Lozach et al., 2011; Raetz et al., 2006). TLR4 ligation reg-

ulates gene expression through signal transduction pathways culminating in the activation of latent

signal-dependent transcription factors, which include members of the nuclear factor kappa-light-
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chain-enhancer of activated B cells (NF-kB), interferon regulatory factor (IRF), and activator protein 1

(AP-1) families (Medzhitov and Horng, 2009). In macrophages, these factors are primarily directed

to macrophage-specific enhancers that are selected by macrophage lineage determining transcrip-

tion factors, PU.1 and CCAAT-enhancer-binding proteins (C/EBPs) (Heinz et al., 2010). The macro-

phage activation phenotype resulting from selective treatment with LPS, or in some cases a

combination of LPS and interferon g (IFNg), is referred to as M(LPS) or M(LPS+IFNg) activation

(Murray et al., 2014), and is considered vital for the host response to bacterial or viral infection.

Macrophages also play important roles in regulating the resolution phase of inflammation as well

as the repair of tissue damage. These functions are controlled by complex microenvironmental path-

ways that include reductionist signals such as transforming growth factor b (TGFb) and interleukin 4

(IL4). TGFb is generally considered to be an inducer of a ’de-activated’ macrophage or M(TGFb) phe-

notype, although it also acts as a potent chemo-attractant for monocytes and can potentiate their

transition into activated cells (Li et al., 2006). Macrophages respond to TGFb in both an autocrine

and paracrine manner. For example, phagocytosis of apoptotic cells results in increased macro-

phage-mediated secretion of TGFb and subsequent inhibition of inflammatory cytokine production

(Li et al., 2006). In addition to dampening inflammatory responses, secreted TGFb plays key roles in

accelerating wound healing and fibrosis (Schuppan and Kim, 2013). At the transcriptional level,

TGFb signal transduction pathways function primarily in a Mothers against decapentaplegic homolog

(SMAD)-dependent manner through Smad2-, Smad3-, and Smad4-mediated activation, as well as

Smad7-mediated inhibition (Massagué, 2012). Like other signal-dependent transcription factors,

ligation of TGFb receptors causes the localization of Smad3 to genomic loci containing lineage-

determining transcription factors (Mullen et al., 2011).

Regulation of macrophage gene expression by IL4 plays roles in containment of parasitic infec-

tions and in homeostatic functions of adipose tissue. IL4 acts through the IL4 receptor to activate

signal transducer and activator of transcription 6 (Stat6) (Lefterova et al., 2010), which positively

regulates gene expression upon binding to recognition elements in promoters and enhancers of tar-

get genes (Li et al., 2006). IL4 signaling regulates genes that control tissue remodeling, phagocyto-

sis, scavenging, and the arginase pathway. The macrophage activation phenotype resulting from

selective treatment with IL4 is referred to as M(IL4) and is considered vital for the role of macro-

phages in wound repair (Van Dyken and Locksley, 2013).

While M(LPS) or M(LPS+IFNg ), M(TGFb), and M(IL4) macrophage phenotypes are clearly distinct in

vitro, they result from selective activation of specific signaling pathways by strongly polarizing ligands.

In vivo, macrophages encounter diverse combinations of signals that can change over time in

response to physiological or pathological processes such as tissue injury. Recent studies show that

these combinations of signals can influence the transcriptional landscape of macrophages in an input-

specific fashion (Lavin et al., 2014; Ginhoux et al., 2015; Gosselin et al., 2014). However, how com-

plex signals are integrated at the level of transcription and how reductionist stimuli (LPS, TGFb, and

IL4) can be used as a framework to predict how combinations of transcriptional regulators coordinate

immune and tissue repair activities in complex tissue microenvironments remain largely unknown.

The Rev-erb nuclear receptor family consists of two members, Rev-erba (also known as nuclear

receptor subfamily 1, group D, member 1, NR1D1) and Rev-erbb (also known as nuclear receptor

subfamily 1, group D, member 2, NR1D2) (Rev-erbs), that regulate the expression of genes involved

in the control of circadian rhythm (Preitner et al., 2002; Liu et al., 2008; Cho et al., 2012), metabo-

lism (Raspé et al., 2002; Le Martelot et al., 2009; Feng et al., 2011; Solt et al., 2012), and inflam-

mation (Fontaine et al., 2008; Gibbs et al., 2012). Rev-erbs mediate transcriptional repression

through recruitment of the nuclear co-repressor (NCoR) and histone de-acetylase 3 (HDAC3) com-

plex (Yin and Lazar, 2005). Rev-erbs lack the carboxy-terminal (AF2) transactivation domain, which

is required for recruitment of co-activators (Durand et al., 1994). Genome-wide location analysis of

Rev-erba and Rev-erbb in macrophages revealed thousands of binding sites, the vast majority of

which resided at macrophage-specific enhancer-like regions of the genome established by PU.1 and

other macrophage lineage determining factors (Lam et al., 2013). Gain and loss of function experi-

ments indicated that Rev-erbs function to suppress the activities of these enhancers by repressing

enhancer-directed transcription. While these studies provided insights into the functional signifi-

cance of enhancer transcription, the biological consequences of the actions of Rev-erbs at these dis-

tal regulatory elements were not explored.
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Figure 1. Overall impact of Rev-erb DKO on signal-dependent gene expression. (a) Schematic illustrating the experimental approach used in defining

the global transcriptional program in WT and Rev-erb DKO bone marrow derived macrophages (BMDMs). (b) Heatmap showing genes captured by

Figure 1 continued on next page
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Here, we provide evidence that Rev-erbs repress the transcription and function of signal-depen-

dent enhancers that are targets of TLR, IL4, TGFb, and DAMP signaling. Rather than exerting a pat-

tern of repression that reinforces a particular polarization phenotype, Rev-erbs regulate subsets of

signal responsive genes that span those associated with M(LPS) or M(LPS+IFNg ), M(TGFb), and M

(IL4) phenotypes, enriching for functions associated with wound repair. Consistent with these in vitro

observations, deletion of Rev-erbs from the hematopoietic lineage in vivo results in accelerated

wound repair. Unexpectedly, we found that a complex tissue injury signal directs genomic binding

patterns for NF-kB p65 (p65), FBJ murine osteosarcoma viral oncogene homolog (Fos – a member

of the activator protein 1, or AP-1, family), and Smad3 that differ substantially from those observed

following selective treatments with a TLR4 agonist or TGFb. In addition, by analyzing changes in

enhancer signatures, we identified Nrf2 as an additional mediator of the transcriptional response to

the tissue injury signal. While these transcription factors exhibit relatively little co-localization in

response to single polarizing ligands, we observe substantial co-localization and enhancer activation

in response to the complex tissue injury signal, resulting in transcriptional outcomes that are qualita-

tively different than the sum of single polarizing signals. These observations provide insights into

how combinations of signals are integrated at a transcriptional level to result in context-specific pat-

terns of gene expression.

Results

Rev-erb transcriptional activity varies according to polarizing signal
Our previous findings that Rev-erbs regulate transcription from signal-dependent enhancers

(Lam et al., 2013) led us to investigate possible biological roles of Rev-erbs in influencing macro-

phage phenotypes (Figure 1a). To study the phenotypic contribution of Rev-erbs to signal-depen-

dent gene expression in macrophages, we performed RNA-Sequencing (RNA-Seq) of poly(A) mRNA

isolated from wild-type macrophages and those deficient for both Rev-erba and Rev-erbb

(Figure 1a). Rev-erb double knockout (DKO) macrophages were generated from bone marrow dif-

ferentiation of Tie2-Cre Rev-erbaflox/flox Rev-erbbflox/flox (Rev-erb DKO) mice and compared to con-

trol macrophages derived from Cre-negative littermates (WT). Deletion of Rev-erbb exons to

generate a non-functional Rev-erbb mRNA results in marked de-repression of Rev-erba expression

and increased expression of a DNA binding domain deleted form of Rev-erba mRNA (Sud et al.,

Figure 1 continued

RNA-Seq associated with Rev-erb control after treatment with the indicated ligands compared to the basal state. Genes shown are those more than

1.5-fold differentially expressed in Rev-erb DKO macrophages compared to WT. Data is represented as log2 fold change between the basal state and

treatment (untreated for 6 hr was used for comparison to KLA, Pam3, Poly I:C, TGFb 9 hr, and tissue homogenate 6 hr; untreated for 24 hr was used for

comparison to KLA + IFNg , IL4, TGFb 29 hr, and tissue homogenate 24 hr). Genes were clustered using k-means clustering (k = 10). For untreated

samples, N = 4, for samples treated with Pam3, Poly I:C, KLA or KLA + IFNg , tissue homogenate, or TGFb, N = 3, and for samples treated with IL4,

N = 2. The data for this heat map is accessible in Figure 1—source data 1. (c) Heatmap showing genes captured by RNA-Seq as differentially

expressed 1.5-fold in the Rev-erb DKO macrophage compared to WT as indicated. Data is represented as log2 fold change between DKO and WT.

Genes were clustered using k-means clustering (k = 10). For untreated samples, N = 4, for samples treated with Pam3, Poly I:C, KLA or KLA + IFNg ,

tissue homogenate, or TGFb, N = 3, and for samples treated with IL4, N = 2. The data for this heat map is accessible in Figure 1—source data 2. (d)

Gene ontology analysis using David (Huang et al., 2009a, 2009b) of genes shown in panel b. (e) Gene ontology analysis using David (Huang et al.,

2009a, 2009b) of genes demonstrating de-repressed expression in Rev-erb DKO macrophages by more than 1.5-fold in all of the conditions combined

(w/o Tissue homog considers de-repressed genes in columns 1–8 of panel c (N = 2315), while w/ Tissue homog considers de-repressed genes in all

columns of panel c (N=2614)).

DOI: 10.7554/eLife.13024.002

The following source data and figure supplement are available for figure 1:

Source data 1. Source data for Figure 1b where each value represents the average normalized log2 fold change between the basal state and treat-

ment state per column.

DOI: 10.7554/eLife.13024.003

Source data 2. Source date for Figure 1c where each value represents the average normalized log2 fold change between the Rev-erb DKO macro-

phages compared to the WT per column.

DOI: 10.7554/eLife.13024.004

Figure supplement 1. Rev-erb deletion strategy and efficiency.

DOI: 10.7554/eLife.13024.005
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Figure 2. Rev-erb DKO bone marrow transplanted animals display enhanced wound closure in a full thickness wound healing model. (a) Wound size
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Figure 2 continued on next page
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2007) (Figure 1—figure supplement 1a–b). Similar effects can be seen following deletion of Rev-

erba exons (corresponding to the DNA-binding domain) with respect to Rev-erbb de-repression

(Figure 1—figure supplement 1a–b). Reduction of targeted Rev-erb exonic mRNA averaged 90%

for Rev-erba and 80% for Rev-erbb (Figure 1—figure supplement 1c).

Activation of TLR3 with a synthetic double-stranded RNA analog, polyinosinic-polycytidylic acid

(Poly I:C), TLR4 with Kdo2-lipid A (KLA), TLR1/2 with a synthetic triacylated lipopeptide, Pam3CSK4

(Pam3), and co-activation with KLA and IFNg induced characteristic pro-inflammatory gene signa-

tures (Figure 1b and d) in WT macrophages. In contrast, IL4 or TGFb stimulation of macrophages

resulted in the expected alternatively activated and de-activated gene profiles, respectively

(Figure 1b and d).

Comparing the gene expression signature from WT and Rev-erb DKO macrophages, for the

majority of genes, the magnitude of differential expression between WT and Rev-erb DKO macro-

phages varied depending on the polarization state (Figure 1c), in some cases only being observed

under basal conditions, and in other cases only observed in response to a particular stimulus. These

results suggest that the magnitude of differential expression in WT compared to Rev-erb DKO mac-

rophages is highly dependent on polarization state.

Rev-erb deficient animals display enhanced wound healing
Gene ontology analysis of mRNAs exhibiting differential expression (>1.5-fold de-repressed in DKO

macrophages) in at least one of the single polarizing conditions revealed significant enrichment for

genes involved in the response to wounding (Figure 1e). Notably, genetic loss of Cx3cr1 and Arg1

has been shown to hinder efficient wound healing in mice (Campbell et al., 2013; Ishida et al.,

2008), suggesting that mice lacking Rev-erbs in cells of hematopoietic origin might exhibit more

rapid wound healing. To test this hypothesis, we utilized a full thickness wound healing model

(Figure 2a) in mice after bone marrow reconstitution with either WT or Rev-erb DKO bone marrow

(Figure 2—figure supplement 1a). Bone marrow reconstitution efficiency exceeded 94% (Figure 2—

figure supplement 1b). We found from three independent experiments that Rev-erb deficiency in

bone marrow derived hematopoietic cells resulted in accelerated wound closure (Figure 2a–b). This

was especially apparent on days 2–6 post-injury (Figure 2a), consistent with Rev-erb deficiency

resulting in a faster response during the immune phase of wound healing.

Wounds from the Rev-erb DKO chimeric mice displayed greater immune cell infiltration and faster

wound healing progression, characterized by enhanced re-epithelialization and increased granulation

tissue development (Figure 2c), characteristics correlated with an accelerated immune response dur-

ing wound healing. In addition, Rev-erb DKO bone marrow transplanted mice displayed more mac-

rophages at the wound site on day 4 post-injury (Figure 2d), while neutrophil persistence at the

wound site remained similar between WT and Rev-erb DKO transplanted mice (Figure 2e). More-

over, matrigel migration assays show increased extravasation of Rev-erb DKO macrophages when

compared to their WT counterparts (Figure 2f). Flow cytometry analysis of circulating blood leuko-

cytes from WT and Rev-erb DKO bone marrow transplanted animals (Figure 2—figure supplement

1c–d) showed no differences in the populations of Ly6Clow/Ly6Chigh circulating monocytes. These

Figure 2 continued

values excluding outliers, and dots outside of the whiskers denote outlier observations. Data are pooled from three independent experiments as

described in more detail in the Materials and methods. The p-values shown reflect comparisons with a p-value less than 0.05, as determined by the

linear mixed effects model. (b) Macroscopic digital photographs of wound closure in WT and Rev-erb DKO bone marrow transplanted animals. (c)

Histological images of wound healing in WT and Rev-erb DKO bone marrow transplanted animals taken at 2.5x magnification after 2, 4, and 6 days.

Arrowheads show differential re-epithelialization between WT and Rev-erb DKO bone marrow transplanted animals. Abbreviations: g=granulation

tissue, d=dermis. Images representative of two independent animals. (d) Day 4 hematoxylin and eosin (H&E), as well as F4/80 stained histological

images taken at 20x magnification. Images representative of two independent animals. (e) Day 4 hematoxylin and eosin (H&E), as well as Ly6B.2 stained

histological images taken at 20x magnification. Images representative of two independent animals. (f) Migration of WT and Rev-erb DKO macrophages

through matrigel extracellular matrix for 24 hr (**p-value <0.01 two-tailed test, Data represent mean + SD from one of three experiments using 8 wells

with cells pooled from 3 independent mice).

DOI: 10.7554/eLife.13024.006

The following figure supplement is available for figure 2:

Figure supplement 1. Engraftment efficiency and quantification of circulating blood cells in WT and DKO chimeras.

DOI: 10.7554/eLife.13024.007
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stimulation with tissue homogenate (Tissue homog). Mouse wound genes from day 1, 4, 8, or 14 post-injury and macrophage tissue homogenate genes

at 6 or 24 hr post-stimulation were compared to uninjured in vivo skin or unstimulated controls, respectively. Differentially expressed genes were those

induced or repressed more than 1.5-fold compared to baseline. Genes were clustered using k-means clustering (k = 10). For unstimulated macrophages

for 6 or 24 hr, N = 2, wound samples from day 1, 8, or 14, N = 2, macrophages stimulated with tissue homogenate for 6 or 24 hr, N = 3, and wound

samples from day 0, or 4, N = 4. (c) Summary of gene ontology analysis using DAVID (Huang et al., 2009a, 2009b) of overlapping wound healing and

Figure 3 continued on next page
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experiments suggest that the increased migration of macrophages into wounds may be cell autono-

mous changes in transcriptional output.

Rev-erbs integrate macrophage responses to a complex wound signal
Classically, tissue injury of the skin, muscle, or organ systems induces an initial local inflammatory

response, which is followed by subsequent regenerative processes involving macrophages and other

immune cells, as well as mesenchymal stem cells (Novak and Koh, 2013). To devise an in vitro

model of the acute in vivo response to wounding, we prepared a supernatant from homogenized

skin (Figure 3a). This tissue homogenate (tissue homog/TH) provides a complex signal derived from

components of disrupted cells (damage associated molecular patterns; DAMPs), the skin micro-

biome (microbial associated molecular patterns; MAMPs), and factors residing in the extracellular

matrix (e.g., TGFb). Tissue homogenate was used to stimulate WT and Rev-erb DKO macrophages

for 6 and 24 hr, followed by RNA-Seq analysis. The gene expression signature of tissue homoge-

nate-stimulated macrophages showed both similarities and differences when compared to the

responses observed after treatment with TLR agonists, IL4, or TGFb (Figure 1b).

In parallel, we performed temporal transcriptomic analysis of biopsied wounds during wound

healing and compared them to unwounded skin (Figure 3a). Although myeloid cells represent only a

small fraction of the total cells analyzed in the wound biopsy, 5590 genes exhibited concordant

changes in expression with those observed following stimulation of macrophages with tissue homog-

enate (Figure 3b). Gene ontology analysis of this set of genes indicated significant enrichment for

biological process terms related to response to wounding, immune response, and cell adhesion

(Figure 3c). Response to wounding was the most highly enriched gene ontology term associated

with genes de-repressed greater than two-fold in Rev-erb DKO tissue homogenate treated macro-

phages (282) followed by immune response and taxis (Figure 3d). De-repressed genes in Rev-erb

DKO macrophages with gene ontology annotations linked to response to wounding and immune

response are indicated in Figure 3e. These results indicate that tissue homogenate induces a Rev-

erb-sensitive program of macrophage gene expression that substantially overlaps with the pattern

of gene expression observed in response to wounding in vivo.

Genes characteristic of alternate polarization states are co-expressed
within individual cells
The approaches used thus far evaluated populations of cells. Genes associated with distinct polariza-

tion states resulting from activation with single ligands but exhibiting co-expression following treat-

ment with tissue homogenate could reflect co-expression at the single cell level or mutually

exclusive expression in subpopulations. To address this question, we performed RT-Q-PCR analysis

of mRNA isolated from single cells maintained under control conditions or treated with tissue

homogenate for 6 hr. We evaluated panels of mRNAs in triplicates corresponding to genes selec-

tively activated by LPS or LPS+IFNg, IL4, TGFb, or tissue homogenate signals, as well as informative

transcription factors and reference genes. After filtering for dead/duplicate cells and eliminating

probes with altered melting curves, data was obtained for 30 genes in 80 control cells and 70

homogenate-treated cells. The distributions of expression values of genes in individual cells under

control or tissue homogenate treatment conditions are illustrated in Figure 4a. Cells treated with

Figure 3 continued

homogenate genes shown in b (N = 5590). Figure 3—source data 1. (d) Summary of gene ontology analysis using DAVID (Huang et al., 2009a,

2009b) of genes de-repressed more than two-fold in Rev-erb DKO macrophages treated with tissue homogenate (TH) in comparison to WT

macrophages (maximum de-repression after tissue homogenate treatment for 6 or 24 hr, N = 282). (e) Bar graphs depicting representative genes de-

repressed more than two-fold (in log2 scale) in Rev-erb DKO macrophages after tissue injury (maximum de-repression after tissue homogenate

treatment for 6 or 24 hr). Genes correspond to those associated with response to wounding and immune response categories in panel d. N as

described in 3b.

DOI: 10.7554/eLife.13024.008

The following source data is available for figure 3:

Source data 1. Source data for Figure 3b where each value represents the average normalized log2 fold change between the basal state and treat-

ment state per column.

DOI: 10.7554/eLife.13024.009
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Figure 4. Genes characteristic of alternate polarization states are co-expressed within individual cells. (a) Violin plots of expression values for genes in

the indicated categories as determined by single cell RT-Q-PCR from bone marrow derived macrophages treated for 6 hr with vehicle or tissue

Figure 4 continued on next page
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tissue homogenate were clustered in a binary fashion, according to whether the gene was expressed

or not expressed. Notably, evaluating individual genes by column, a subset from each category of

polarization states is expressed in the majority of cells (e.g., Cxcl1, Dusp4, Cx3cr1, Pf4) (Figure 4b).

Conversely, evaluating the total set of genes across individual cells, genes from each polarization

state can be expressed at similar levels in the same cell (Figure 4c). Of interest, clustering revealed

two main groups that were distinguished by lack of detectable expression of Fos and Rela. Cells

lacking Fos and Rela expression also exhibit reduced expression of subsets of genes in the M(LPS) or

M(LPS+IFNg ), tissue homogenate, and transcription factor categories. Collectively, these findings

indicate that while there is substantial heterogeneity in gene expression at the single cell level,

genes characteristic of M(LPS) or M(LPS+IFNg), M(TGFb), and M(IL4) polarization states can be co-

expressed in individual cells.

Complex signals re-allocate transcription factors to novel genomic loci
To investigate mechanisms underlying effects of tissue homogenate on gene expression, we per-

formed chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) for his-

tone 3 lysine 27 acetylation (H3K27ac), a histone modification associated with active enhancers and

promoters (Creyghton et al., 2010), after 3 or 6 hr of control (Veh) or tissue homogenate stimula-

tion. Treatment with tissue homogenate induced H3K27ac at ~2500 regions after 3 hr and ~5000

regions after 6 hr (Figure 5a). De novo motif analysis revealed binding sites for Nrf2, AP-1, and NF-

kB motifs as among the most highly enriched sequences in these regions (Figure 5b).

Based on these motif findings, we initially performed ChIP-Seq analysis for p65 and Fos in macro-

phages treated with control or tissue homogenate. In addition, because SMAD motifs are difficult to

retrieve using de novo motif analysis and tissue homogenate stimulation resembled treatment with

TGFb (Figure 1b), we performed corresponding ChIP-Seq analysis of Smad3. In each case, we

observed that tissue homogenate induced a pattern of genomic binding sites that substantially dif-

fered from the pattern resulting from stimulation with the single ligands, KLA (p65 and Fos) or TGFb

(Smad3) (Figure 5c). These binding sites were also highly associated with tissue homogenate-induced

gain of H3K27ac, consistent with their contribution to these changes in active chromatin (Figure 5d).

Examples of the binding patterns of Fos, p65, Smad3, and PU.1 in the vicinity of highly regulated

genes are illustrated in Figure 6a, with responses of corresponding mRNAs to KLA, TGFb, and tissue

homogenate in WT and Rev-erb DKO macrophages shown in Figure 6b. Each genomic location con-

tains numerous binding sites for each factor. PU.1 and Fos exhibit a high degree of constitutive bind-

ing, consistent with roles as pioneering factors that collaborate with each other and other

macrophage lineage-determining factors, but also show quantitative changes in response to KLA

and tissue homogenate. Smad3 and p65 both exhibit strong signal-dependent increases in ChIP-Seq

signal at the majority of their binding sites. We note here that the starting conditions for KLA induc-

tion and tissue homogenate treatment differ, resulting in more constitutive binding of p65 in the

vehicle control for tissue homogenate experiments.

Overall, there is a strong co-occurrence of p65 and Smad3 with pre-existing binding of Fos and

PU.1, consistent with roles of these factors in establishing open regions of chromatin. Despite

exhaustive efforts, we were not successful in determining high-confidence cistromes for endogenous

Rev-erbs in BMDMs. We therefore considered the genomic locations of 7889 high-confidence bind-

ing sites occupied by both Rev-erba and Rev-erbb defined by ChIP-Seq of biotin-tagged proteins in

RAW264.7 macrophages (Lam et al., 2013). For the de-repressed genes in the Rev-erb DKO, such

as Cx3cr1, Mmp9, Arg1, and Socs3 (Figure 6a), strong Rev-erb peaks coincide with at least one

nearby enhancer-like region occupied by PU.1 and/or Fos, as well as p65 and/or Smad3 (e.g.,

Figure 4 continued

homogenate. Y-axis shows RT-Q-PCR CTs. Higher values indicate lower expression (30: gene product could not be detected). Values are averaged over

3 PCR replicates per gene. (b) Hierarchical clustering with Euclidean distance of single bone marrow derived macrophages treated with tissue

homogenate based on expression (red) or lack of expression (blue) of the genes indicated at the top. Genes with alternating melting curves were

treated as undefined (grey). PCR replicates are shown sequentially (N = 3). (c) RT-Q-PCR expression values for genes indicated above for four

representative cells. Y-axis normalized to (30/CT) – 1. Higher values indicate higher expression (0: gene product could not be detected). Values are

averaged over 3 PCR replicates per gene.
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Figure 5. Complex transcriptional signals re-allocate transcription factors to novel genomic loci. (a) H3K27ac regions differentially gained upon

treatment for 3 or 6 hr with tissue homogenate compared to treatment for 3 or 6 hr with the vehicle control. The heatmap shows a 6 kb window of
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Figure 6a). Furthermore, the majority of Rev-erb binding sites identified in RAW264.7 macrophages

co-localize with binding sites for their obligate co-repressor NCoR in BMDMs, strongly suggesting

that Rev-erbs occupy a similar cistrome in these cells (Figure 6a).

Two observations were unexpected and noteworthy. First, a subset of enhancer-like regions occu-

pied by Smad3 in cells treated with TGFb were occupied by p65 in cells treated with KLA. Under

conditions of stimulation with either KLA or TGFb alone, the expectation is that these regions would

be occupied by one factor, but not the other. However, in the context of tissue homogenate treat-

ment, both factors are simultaneously bound (Figure 6a, yellow boxes). Second, and consistent with

the results presented in Figure 5c, tissue homogenate treatment leads to binding sites for p65 and

Smad3 that are not observed following treatment with KLA or TGFb, respectively (Figure 6a, blue

boxes). Furthermore, many of the new binding sites for p65 co-localize with Smad3 and vice versa.

Consistent with these findings at individual genomic locations, motif analysis of tissue homogenate-

specific SMAD binding sites (from Figure 5c) using TGFb-specific SMAD sites as the background

returned an NF-kB recognition motif as the second most highly enriched motif (Figure 7a).

To investigate whether co-localization of p65 and Smad3 in tissue homogenate-treated cells was

a specific consequence of the complex signal, we performed ChIP-Seq analysis of p65 in macro-

phages selectively treated with TGFb. We observed ~7400 p65 peaks, 5465 of which overlapped

with the 39,825 peaks for Smad3 observed in TGFb-treated cells, representing an overlap with 6% of

the Smad3 peaks (Figure 7b). In contrast, we observed 20,858 p65 peaks and 13,975 Smad3 peaks

in homogenate-treated cells, with p65 co-localizing with 11,379 (82%) of the Smad3 binding sites.

Therefore, the complex tissue homogenate signal drives substantial co-localization of p65 with

Smad3 that is not observed following selective treatment with TGFb. These relationships are further

illustrated for two representative genes, Arg1 and Cxcl2, in Figure 7c, in which yellow shading indi-

cates regions where tissue homogenate induced p65 binding to regions occupied by Smad3 under

either TGFb or tissue homogenate treatment, whereas blue shading indicates regions in which both

p65 and Smad3 binding are selectively observed following treatment with tissue homogenate.

Nrf2 target genes and Nrf2 genomic binding are induced by tissue
damage signals
Unexpectedly, the top enriched motif in tissue homogenate-specific SMAD sites is a binding site for

NFE2L2, also known as Nrf2 (Figure 7a). This was also the top motif recovered from motif analysis

of genomic regions exhibiting a gain in H3K27ac 3 hr following stimulation with tissue homogenate

(Figure 5b). Nrf2 is a latent basic leucine zipper (bZIP) protein that is activated in response to cell

injury and inflammation, and regulates the expression of antioxidant proteins that protect against

oxidative damage (Chen et al., 2015). Evaluation of RNA-seq data from both the in vivo wound

model and tissue homogenate-treated macrophages revealed upregulation of numerous Nrf2 target

genes, including Txn1, Sod2, Hmox1, Prdx6, and Nqo1, suggesting that Nrf2 is activated in macro-

phages as part of the wound response (Figure 7d). We therefore performed ChIP-Seq analysis for

Nrf2 in macrophages before and after tissue homogenate treatment. These experiments demon-

strated that tissue homogenate increased the genome-wide binding of Nrf2 at thousands of geno-

mic locations, a substantial fraction of which were observed to overlap with the tissue homogenate-

induced binding sites for p65, Fos, and Smad3 (e.g., Figure 6a).

Figure 5 continued

normalized H3K27ac tag counts of the 2510 or 5005 homogenate gained regions at 3 or 6 hr, respectively, centered on the nucleosome free region

(nfr). Input shows genomic background at these regions. N = 1. (b) Motifs enriched in the vicinity of gained H3K27ac sites after treatment with tissue

homogenate for 3 or 6 hr using de novo motif enrichment analysis. (c) Comparison of Fos, p65, or Smad3 tag counts at genomic regions that contain

Fos, p65, or Smad3 binding after stimulation with KLA, TGFb, or tissue homogenate. Peaks found to be differentially gained (four-fold more tags) with

KLA or TGFb are colored red, while peaks found to be differentially gained (four-fold more tags) upon tissue homogenate treatment are colored blue.

N = 1. (d) Quantification of H3K27ac, Fos, p65, and Smad3 ChIP-Seq tag counts in the 6 hr vehicle or tissue homogenate treated states centered on

homogenate gained (using HOMER) Fos, p65, or Smad3 binding events. Dashed lines represent ChIP-Seq signal of the vehicle state and solid lines

represent the signal after 6 hr of tissue homogenate stimulation. Blue represents H3K27ac signal, orange represents signal of the respective

transcription factor. N = 1.
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Tissue damage signals drive co-localization of PU.1, p65, Fos, Smad3,
and Nrf2
To further explore the signal-dependent binding patterns of p65, Fos, Smad3, and Nrf2, we per-

formed unbiased hierarchical clustering using peaks gained after stimulation with tissue homogenate

or single stimuli. This analysis revealed that genomic occupancy of PU.1, Smad3, Nrf2, Fos, and p65

was most similar upon treatment of macrophages with the tissue homogenate signal, whereas pat-

terns of transcription factor binding were more varied upon treatment of macrophages with individ-

ual stimuli (Figure 7e). This co-binding of transcription factors is further emphasized when

comparing the overlap of the investigated transcription factors upon treatment of cells with tissue

homogenate or the vehicle control (Figure 7f and g). This approach demonstrated co-localization of

only 1.4% (893) of peaks in the vehicle state, which increased to 12.05% (7758) overlap when cells

Rev-erb
Rev-erb  

Veh 

TH 6h 

Veh

TH 6h 

KLA 6h 

notx

Veh

TH 6h 

notx

TGF  4h 

NCoR 

a

Cx3cr1 

Untreated 24h

Untreated 6h

TGF  29h

TGF  9h

TH 6h

TH 24h

KLA 6h

Normalized tag counts 

Mmp9 

WT

Normalized tag counts 

Arg1 

Normalized tag counts 

b

p65

Fos

Smad3

PU.1 
Veh

TH 6h 

20 kb

Cx3cr1

20 kb

Mmp9 Arg1
20 kb

Rev-erb DKO

Veh

TH 6h 
Nrf2

Socs3

Normalized tag counts 

20 kb

Socs3

0 1000 2000 3000 4000 0 1000 2000 3000 0 100 200 300 400 500 0 2000 4000 6000 8000 

Figure 6. Locus-specific effects of Rev-erbs and signal-dependent transcription factors. (a) UCSC genome browser images depicting the genomic

regions surrounding Rev-erb target genes, Cx3cr1, Mmp9, Arg1, or Socs3. The image shows the co-localization of Rev-erba/Rev-erbb, PU.1, Fos, Nrf2,

p65, and Smad3 upon homogenate treatment. Yellow denotes gain of signal-dependent transcription factor peaks (p65 or Smad3) and Nrf2 after tissue

homogenate stimulation that is not seen after treatment with one single polarizing signal. Blue denotes gain of signal-dependent transcription factor

peaks (p65 and Smad3) after tissue homogenate stimulation that is not seen after treatment with either single polarizing signal. (b) Comparison of

normalized RNA-Seq tag counts from WT or Rev-erb DKO macrophages stimulated as indicated. Error bars show standard deviation. For unstimulated

6 hr and 24 hr samples, N = 2, samples stimulated with KLA, tissue homogenate for 6 or 24 hr or TGFb for 9 or 29 hr, N = 3.
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were treated with tissue homogenate. This eight-fold increase in co-localization suggests that the

combination of signals present in tissue homogenate induce co-binding of multiple transcription fac-

tors to enhancers that mediate the tissue injury response.

NF-kB, Smad, Nrf2, and Rev-erb signaling pathways contribute to the
integrated tissue damage response
Tissue homogenate contains a combination of DAMPs, MAMPs and other factors that have the

potential to activate numerous signaling pathways. While ChIP-Seq experiments documented that

tissue homogenate induces genomic binding of p65, Smad3, and Nrf2, these studies do not estab-

lish functional roles of these factors in the integrated transcriptional response. To address this ques-

tion, we evaluated effects of chemical inhibitors of NF-kB, Smad3, and Nrf2 on gene expression in

tissue homogenate-treated macrophages, using the IKK inhibitor VII to inhibit NF-kB activity, SB-

43154 to inhibit TGFb signaling, and glutathione to block the activation of Nrf2 (Figure 8a–c). These

studies support the idea that each factor contributes to the integrated response to tissue homoge-

nate. For example, activation of Cx3cr1 by tissue homogenate was decreased upon targeting the

NF-kB, TGFb receptor, and Nrf2 pathways, supporting the involvement of all of these pathways in

the regulation of this gene. Conversely, tissue homogenate activation of other genes was more

dependent on specific signal-dependent pathways. For instance, Dusp5 activation was sensitive to

NF-kB inhibition (Figure 8a) while Nptx1 activation was unaffected by NF-kB inhibition (Figure 8a).

Surprisingly, Socs3 activation was sensitive to both inhibition of NF-kB and TGFb receptor signaling

(Figure 8a and b) and Ctla2b was selectively sensitive to inhibition of TGFb receptor signaling

(Figure 8b). Established Nrf2 target genes Txn1 and Hmox1, which were also induced by tissue

homogenate, were repressed by glutathione co-treatment (Figure 8c). Finally, we investigated the

ability of the Rev-erb agonist SR-9009 to influence the responses to tissue homogenate. This agonist

repressed a subset of genes in tissue homogenate-treated macrophages, exemplified by Cx3cr1,

Gpr84, and Pgd (Figure 8d). These results are consistent with these genes being de-repressed in

Rev-Erb DKO macrophages.

Discussion
Rev-erbs have been established to play general roles in the regulation of promoters of ubiquitously

expressed genes such as Bmal that control the circadian rhythm (Preitner et al., 2002; Liu et al.,

2008; Cho et al., 2012). However, the great majority of Rev-erb binding sites in macrophages are

located at cell-specific enhancers, which are selected by macrophage lineage-determining factors

such as PU.1 (Lam et al., 2013). These observations predicted that in addition to cell autonomous

regulation of the circadian rhythm, Rev-erbs would also regulate a macrophage-specific program of

gene expression. Here, using loss of function, transcriptomic, and epigenetic analyses, we demon-

strate that Rev-erbs function to repress a network of genes associated with the response to wound-

ing. Consistent with altered transcriptional responses observed in vitro, loss of Rev-erb expression in

cells derived from the bone marrow compartment resulted in accelerated wound healing in the skin.

As the Rev-erbs are deleted from all hematopoietic lineages in these experiments, further studies

will be required to establish the relative contributions of macrophages and other bone marrow-

derived cells to this phenotype. How this function of Rev-erbs might contribute to normal tissue

homeostasis is as yet unclear. In vivo, Rev-erb expression is circadian (Cho et al., 2012), implying

that the effects on macrophage gene expression observed in the present studies are likely to vary

over the course of the day. Rev-erbs may thus act in a circadian manner to regulate aspects of tissue

macrophage gene expression required for the normal turnover of extracellular matrix, tissue remod-

eling, and wound healing.

By evaluating the consequences of Rev-erb deficiency on macrophage gene expression in

response to distinct polarizing signals in vitro, we found that the consequences of loss of function of

Rev-erbs were dependent on the specific polarizing signal. Consistent with this, Rev-erbs co-localize

with NF-kB p65 and AP-1 family member Fos at enhancers activated by TLR ligands, and with

Smad3 at enhancers activated by TGFb. Although of interest from a mechanistic standpoint, these

findings are of uncertain relevance to functions of macrophages within tissue environments, which

contain a multitude of signaling molecules that are sensed simultaneously. To model the complex

environment associated with acute tissue damage, we treated macrophages with a supernatant of a
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Figure 7. Signal-dependent transcription factors collaborate in response to complex stimuli. (a) Motifs enriched in the vicinity (200 bp) of Smad3

binding sites that are specific to tissue homogenate (induced four-fold), as compared to Smad3 binding sites that are specific to TGFb (induced four-

Figure 7 continued on next page
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skin homogenate. While the specific identities and concentrations of the DAMPs, MAMPs, and other

bioactive molecules in this homogenate are unknown, we provide evidence that the transcriptomic

response of the macrophage to this mixture overlaps significantly with the transcriptional response

observed in a skin wound, thereby validating its use. Through ChIP-Seq experiments, we demon-

strate that this complex signal coordinately induces binding of NF-kB, AP-1, and Smad transcription

factors. Furthermore, de novo motif analysis of activated enhancers led to the unexpected discovery

that the tissue damage signal also acutely activates Nrf2. This finding illustrates the utility of

enhancer analysis to identify transcriptional mediators of unknown environmental factors, providing

a basis for subsequent directed analysis of corresponding upstream signaling pathways. Accordingly,

the use of glutathione to neutralize reactive oxygen species, thus blocking the downstream disrup-

tion of the Kelch-like ECH-associated protein 1 (Keap1)-Cuilin 3 (Cul3) complex required for activa-

tion of Nrf2 (Gorrini et al., 2013; Shibata et al., 2013) provides evidence for its functional

importance in the transcriptional response to the tissue damage signal. Similarly, the use of inhibitors

of NF-kB and TGFb provided corresponding support for functionally important roles of these tran-

scription factors. Of course, there are likely to be many other signaling pathways and downstream

transcription factors involved in the tissue damage response. Furthermore, Rev-erb deficiency likely

modifies both basal and signal dependent transcriptional programs. To distinguish between ’prior’

versus ’post-activation’ roles of Rev-erbs in macrophages during wound healing may require the use

of inducible Cre-expression strategies, as well as measurements of target gene expression in situ in

macrophage infiltrated wounds.

Three additional observations are of particular interest. The first is that the complex signal pro-

vided by tissue homogenate induced co-expression of genes characteristic of distinct macrophage

polarization states within individual cells. Second, we found that the tissue homogenate signal

induced different genomic locations of p65, Fos, and Smad3 than were observed following KLA or

TGFb, respectively, resulting in co-binding at a large number of enhancer-like regions in the vicinity

of tissue homogenate-induced genes. An important implication of these findings is that transcription

factors binding maps are context-dependent and must be interpreted accordingly. We speculate

that the observed co-localization of factors in response to the complex signal enables the appropri-

ate integration of multiple relevant signaling components necessary for the initial acquisition of a

wound repair phenotype (Figure 8e). Third, the present findings may have practical applications

based on the development of small molecules that enhance or inhibit Rev-erb repressive activity

(Solt et al., 2012). Delayed wound healing is observed in a number of pathological contexts, includ-

ing in diabetics (Falanga, 2005; Sen et al., 2009) and in immunocompromised individuals

(Chen et al., 2013; Lin et al., 2011). In these settings, it is possible that Rev-erb antagonists could

be evaluated as a means of enhancing wound repair. Alternatively, a large number of devastating

and largely untreatable diseases are characterized by exaggerated tissue fibrosis, such as idiopathic

pulmonary fibrosis, interstitial renal fibrosis, and liver fibrosis (Schuppan and Kim, 2013). We dem-

onstrate that a Rev-erb agonist can suppress a subset of genes that are de-repressed in the Rev-erb

DKO and are regulated by the complex wound signal. Overall, our findings suggest that Rev-erbs

act to repress a specific combination of genes downstream of multiple signaling pathways that col-

lectively function in an integrated manner to promote the response to wounding (Figure 8e). It will

therefore be of interest to evaluate whether defects in Rev-erb signaling are associated with these

diseases and whether pharmacological modulation of Rev-erb might be of therapeutic benefit.

Figure 7 continued

fold) using de novo motif enrichment analysis. (b) Venn diagrams depicting overlap of Smad3 and p65 after treatment with TGFb (left) or tissue

homogenate (right). Peaks have a minimal normalized tag count of 16. N = 1. (c) UCSC genome browser images depicting the genomic regions

surrounding genes highly induced by tissue homogenate and not by TGFb. Yellow denotes gain of signal-dependent transcription factor peaks (p65 or

Smad3) after tissue homogenate stimulation that is not seen after treatment with one single polarizing signal. Blue denotes gain of signal-dependent

transcription factor peaks (p65 and Smad3) after tissue homogenate stimulation that is not seen after treatment with either single polarizing signal. (d)

Bar graphs depicting canonical Nrf2 genes induced during stimulation with tissue homogenate (green and blue) or during wound healing (purple and

red). N as described in 3b. (e) Heatmap showing the log2 fold change of transcription factor tag counts at all genomic regions (minimum of 64

normalized tag counts in at least one condition per row) that are differentially gained (four-fold more tags) after stimulation as indicated. N = 1. (f)

Chow-Ruskey Venn diagram depicting the overlap of all p65, PU.1, Fos, Smad3, and Nrf2 peaks after treatment with vehicle. Peaks have a minimal

normalized tag count of 16. N = 1. (f) Same as (g) but depicting the overlap of all peaks after treatment with tissue homogenate. N = 1.
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Figure 8. Chemical inhibition of multiple signal-dependent pathways results in decreased response to complex tissue homogenate signal. (a) Box and

whisker plots of expression values for genes as determined by RT-Q-PCR from bone marrow derived macrophages treated with tissue homogenate for

Figure 8 continued on next page
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Materials and methods

Cell culture
Mouse bone marrow derived macrophages were obtained and cultured as previously described

(Heinz et al., 2010). For cytokine stimulation studies, macrophages were cultured in RPMI-1640

(Invitrogen, Waltham, MA) supplemented with 16.7 ng/ml CSF1 (Shenandoah

Biotechnology, Warwick, PA) and 0.5% heat-inactivated fetal bovine serum (FBS)

(Hyclone, Logan, UT) overnight and then stimulated with Pam3CSK4 (300 ng/ml, InvivoGen, San

Diego, CA), polyinosinic-polycytidylic acid (50 ng/ml, GE Healthcare Bioscience, Pittsburgh, PA),

Kdo2-Lipid A (100 ng/ml, Avanti Polar Lipids, Alabaster, AL), recombinant interferon g (10 U/ml,

R&D Systems, Minneapolis, MN), interleukin 4 (20 ng/ml, R&D Systems), or tumor growth factor b (1

ng/ml, Cell Signaling, Danvers, MA) for the indicated time points. For ChIP-Seq experiments, cells

treated with TGFb or KLA were compared to untreated cells as a control.

For whole-skin tissue homogenate studies, skin from shaved wild type congenic mice was har-

vested and homogenized in RPMI-1640 supplemented with 0.5% heat-inactivated FBS using a Pre-

cellys 24 tissue homogenizer (6500 RPM, 4 � 20 s) and metal beads (2.8 mm beads, 2 mL tubes,

Cayman Chemical, Ann Arbor, MI) according to the manufacturer’s instructions. Skin homogenate

was then centrifuged at 4000 RPM for 30 min at 4˚C, and the supernatant filtered through a 0.2 mm

filter (Nalgene, ThermoScientific, Rochester, NY). Approximately 50 ml of tissue homogenate was

collected per mouse. To stimulate macrophages, macrophages were cultured in RPMI-1640 (Invitro-

gen) supplemented with 16.7 ng/ml CSF1 and 0.5% heat-inactivated FBS overnight. The following

morning, the media was switched to either tissue homogenate or vehicle. 16.7 ng/ml CSF1 was

added exogenously to both the homogenate and vehicle treatment conditions. For RNA-Seq repli-

cates using BMDMs (where applicable), bone marrow of several mice were pooled and then cultured

in different wells and processed independently.

For inhibitor experiments, macrophages were generated and cultured as described above, then

pre-treated with 1 mM IKK inhibitor VII (Calbiochem, Billerica, MA), 12.5 mM TGFb RI kinase inhibitor

SB-43154 (Calbiochem), or 5 mM Rev-erb agonist SR-9009 (Burris laboratory) (Lewis et al., 2013) for

1 hr before treatment with tissue homogenate. For anti-oxidant experiments, macrophages were co-

treated with tissue homogenate and 15 mM glutathione (Sigma, St. Louis, MO).

Rev-erb DKO mice and genotyping
Rev-erba and Rev-erbb double floxed mice were generated as previously described (Cho et al.,

2012) and crossed with Tie2-Cre (Lam et al., 2013). Breeding and genotyping were performed as

previously described (Lam et al., 2013). Only males were used for wound healing experiments while

both males and females were used for flow cytometry experiments to enumerate monocyte popula-

tions from peripheral blood. Littermates without the Tie2-Cre transgene were used as WT controls.

All animal procedures were performed in accordance with the University of California, San Diego

research guidelines for the care and use of laboratory animals (Permit Number: S01015).

RNA isolation and RT-Q-PCR
Total RNA was harvested from tissue and cells using the RNeasy Mini Kit (Qiagen, Hilden, Germany)

with in column DNase digestion performed according to the manufacturer’s instructions. DNase-

Figure 8 continued

6 hr, and pre-treated for 1 hr with vehicle (gray) or 1 mM IKK inhibitor VII (pink). Y-axis shows RT-Q-PCR -(Delta CT), which is normalized to the

housekeeping gene 36B4. Lower values indicate lower expression. N = 8 mice. P-values are shown comparing vehicle versus inhibitor treatment as

determined by unpaired t-test. (b) Same as (a) but with pre-treatment for 1 hr with vehicle (gray) or 12.5 mM TGFb inhibitor SB-43154 (green).

N = 8 mice. (c) Same as (a) but samples were co-treated with tissue homogenate and vehicle (gray) or tissue homogenate and 15 mM glutathione

(orange) for 6 hr. N = 6 mice. (d) Same as (a) but with pre-treatment for 1 hr with vehicle (gray) or 15 mM Rev-erb agonist SR-9009 (blue). N = 6 mice. (e)

Working model showing that signal-specific stimuli (KLA/TGFb/oxidative stress) activate their respective signal-dependent transcription factors NF-kB,

Smads, and Nrf2, which bind to distinct sets of enhancers and promoters. Tissue damage signal activates all three factors simultaneously, which can co-

occupy enhancers and promoters to generate a transcriptional response that is different than the sum of TGFb, KLA, and oxidative stress mediated

signaling. A subset of these sites that are co-bound and repressed by Rev-erbs are involved in regulating the macrophage response to wounding.
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treated RNA was used for cDNA synthesis using Superscript III (Invitrogen) according to the manufac-

turer’s instructions.

For the IKK inhibitor VII and TGFb inhibitor experiments, cDNA from biological replicates (N = 8)

were assessed by quantitative polymerase chain reaction using SYBR GreenER Master Mix (Invitro-

gen) or SYBR Fast qPCR Master Mix (Kapa Biosystems, Wilmington, MA) on an Applied Biosystems

7300 Real-time PCR system or Step One Plus. For the glutathione and Rev-erb agonist experiments,

cDNA from biological replicates (N = 6) were synthesized and assessed in technical triplicates by

quantitative PCR using a Fluidigm Biomark HD (Fluidigm, San Francisco, CA). For statistical analysis,

the delta CT was calculated for each biological replicate using 36B4 as the reference gene. Data

were compared statistically using the t-test command in R.

Single Cell RT-Q-PCR and analysis
BMDMs on petri plates were treated for 6 hr with vehicle or tissue homogenate in the presence of

recombinant CSF-1. Following treatment, cells were removed by scraping and captured on a Fluid-

igm 17–25 micrometer C1 Single-Cell Auto Prep Array IFC or a 10–17 micrometer C1 Single-Cell

Auto Prep Array IFC for homogenate or vehicle treated cells, respectively, according to the manufac-

turer’s instructions. IFC positions having a single viable cell were noted and gene specific priming

and pre-amplification was performed using the Fluidigm C1 instrument and the instrument protocol

number 100–4904 H1. After cDNA synthesis, samples were harvested and stored at �20˚C prior to

detection of cDNA using Fluidigm 96.96 Dynamic arrays using the instrument protocol number 100–

9792 A1. cDNA from individual cells was assessed in triplicate using the primers listed below.

For analysis of the data, melting curves of the triplicates were compared and samples with different

melting curves or melting curves with more than one product were defined as NA. Gene products that

could not be detected by Q-PCR were set to a CT of 30. A majority analysis was applied to the tripli-

cates to calculate the average CT per primer pair per single cell (for violin plots [Font-Vizcarra et al.,

2012]). Data was converted into binary data for gene expression heatmap, using 1 for expressed, 0 for

not expressed (CT equals 30) and NA for undetermined. For cases where one sample of the triplicates

had value 1, one had value 0 and one had value NA, NA was used as consensus. The heatmap for sin-

gle cell analysis was created using hierarchical clustering with Euclidian distance in R.

RT-Q-PCR Primers

Gene target Primer sequence

36B4-Forward AGGGCGACCTGGAAGTCC

36B4-Reverse CCCACAATGAAGCATTTTGGA

Arg1-Forward TTTTAGGGTTACGGCCGGTG

Arg1-Reverse CCTCGAGGCTGTCCTTTTGA

Cd14-Forward CAGAGAACACCACCGCTGTA

Cd14-Reverse CACGCTCCATGGTCGGTAGA

Cd86-Forward CAGCACGGACTTGAACAACC

Cd86-Reverse CTCCACGGAAACAGCATCTGA

Ctla2b-Forward CTCATGCACCACTAGCCTCC

Ctla2b-Reverse AGCAGGAAGACAGCACTGAA

Cx3cr1-Forward CCATCTGCTCAGGACCTCAC

Cx3cr1-Reverse CACCAGACCGAACGTGAAGA

Cxcl1-Forward ACCCAAACCGAAGTCATAGCC

Cxcl1-Reverse TTGTCAGAAGCCAGCGTTCA

Cxcl2-Forward TGAACAAAGGCAAGGCTAACTG

Cxcl2-Reverse CAGGTACGATCCAGGCTTCC

Cxcl3-Forward ACCCAGACAGAAGTCATAGCCA

Cxcl3-Reverse CTTCATCATGGTGAGGGGCT
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Dusp4-Forward CATCGAGTACATCGACGCAG

Dusp4-Reverse ATGAAGCTGAAGTTGGGCGA

Dusp5-Forward GCACCACCCACCTACACTAC

Dusp5-Reverse CCTTCTTCCCTGACACAGTCAAT

Fos-Forward TTTCAACGCCGACTACGAGG

Fos-Reverse TCTGCGCAAAAGTCCTGTGT

Gpc1-Forward GCCATGGAACTCCGGACC

Gpc1-Reverse GCAGGTGCTCACCCGAGAT

Gpr84-Forward AAACTGGGAACCTCAGTCTCCA

Gpr84-Reverse GCCCAACACAGACTCATGGTA

Hmox1-Forward GAGCAGAACCAGCCTGAACT

Hmox1-Reverse AAATCCTGGGGCATGCTGTC

Hprt-Forward GTTGGGCTTACCTCACTGCT

Hprt-Reverse TCATCGCTAATCACGACGCT

Igsf11-Forward GTGTCGCTGCTCGGTGT

Igsf11-Reverse AGAATGACCTGTTCGGGCTG

Il10-Forward GGTTGCCAAGCCTTATCGGA

Il10-Reverse GGGGAGAAATCGATGACAGC

Il1b-Forward TGCCACCTTTTGACAGTGATG

Il1b-Reverse TGATGTGCTGCTGCGAGATT

Il1r1-Forward GCTGACTTGAGGAGGCAGTT

Il1r1-Reverse CATACGTCAATCTCCAGCGAC

Nptx1-Forward TGGAGAACCTCGAGCAGTACA

Nptx1-Reverse GTCAAGGCGCTCTCGATCTT

Pf4-Forward CCCGAAGAAAGCGATGGAGAT

Pf4-Reverse TTCAGGGTGGCTATGAGCTGG

Pgd-Forward CTCCTCGACTCTGCTTCGTC

Pgd-Reverse GCACAGACCACAAATCCATGA

Polr3c-Forward TCTAAGAAGGGGCGATGGGA

Polr3c-Reverse AGCCTCAGAACTCAGGGTCG

Ptgs2-Forward AGCCAGGCAGCAAATCCTT

Ptgs2-Reverse GGGTGGGCTTCAGCAGTAAT

Rela-Forward CGGATTCCGGGCAGTGAC

Rela-Reverse GAGGGGAAACAGATCGTCCA

Smad3-Forward AAGAAGCTCAAGAAGACGGGG

Smad3-Reverse CAGTGACCTGGGGATGGTAAT

Socs3-Forward TAGACTTCACGGCTGCCAAC

Socs3-Reverse CGGGGAGCTAGTCCCGAA

Spi1-Forward AAGCAGGGGATCTGACCAAC

Spi1-Reverse AGTCATCCGATGGAGGGGC

Thbs1-Forward GACAATTTTCAGGGGGTGCT

Thbs1-Reverse AGAAGGACGTTGGTAGCTGAG

Tnf-Forward GATCGGTCCCCAAAGGGATG

Tnf-Reverse GTGGTTTGTGAGTGTGAGGGT

Tnfrsf12a-Forward CAATCATGGCTTCGGCTTGG

Tnfrsf12a-Reverse CTGCGGCGCCTGGTG

Traf3ip2-Forward CCTGCTCCACCACTTACCTG
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Traf3ip2-Reverse TCTAGTTTCTAAGATCGCCACCG

Txn1-Forward AGCCCTTCTTCCATTCCCTC

Txn1-Reverse GGAAGGTCGGCATGCATTTG

Ube2d2a-Forward AGCTGAGTGGGGCCTCG

Ube2d2a-Reverse TCAATTCCTTGTGGATTCTCTTCA

RNA-Seq
Detailed protocols for RNA-Seq experiments have been previously described (Kaikkonen et al.,

2013; Heinz et al., 2013). Briefly, total RNA was isolated using TRIzol LS (ThermoFisher Scientific)

and resuspended with UltraPure water (ThermoFisher Scientific) supplemented with 1 m/mL SUPER-

ase-In (Ambion) then treated with TURBO DNA-free kit (Ambion). Poly(A) selection was performed

using the MicroPoly(A)Purist kit (Invitrogen) according to the manufacturer’s instructions. Poly(A)

RNA was fragmented using RNA Fragmentation Reagents (Ambion) for 10 min at 70˚C and purified

by running through a Micro Bio-Spin P-30 column (Bio-Rad, Irvine, CA) according to the manufac-

turer’s instructions. 30 ng RNA was utilized for subsequent library preparation.

For the following RNA samples: two replicates of the four day 0 in vivo wound samples, day 1

wound samples, day 4 wound samples, and day 14 wound samples, RNA library preparation was

performed as previously described (Kaikkonen et al., 2013). Fragmented RNA was de-phosphory-

lated using 1 mL T4 polynucleotide kinase (New England Biolabs, Ipswich, MA) and 5 mL 5x PNK

buffer (0.5 M MES, 50 mM MgCl2, 50 mM mercaptoethanol, 1.5 M NaCl, pH 5.5–5.8) supplemented

with 1 m/mL SUPERase-In for 45 min at 37˚C, an additional 1 mL T4 polynucleotide kinase was added

to the reaction, followed by incubation for 45 min, and subsequent heat-inactivation for 5 min at

70˚C and ethanol precipitation overnight with glycogen. The pellet was resuspended in 5.5 mL nucle-

ase free water supplemented with 1 m/mL SUPERase-In and denatured for 5 min at 65˚C. Poly(A)-tail-
ing reaction was performed using 3.75 m E. coli poly(A)-polymerase (New England Biolabs) in 10x

poly(A)-polymerase buffer supplemented with ATP (50:1 molar ratio to RNA) and 1 m/mL SUPERase-

In for 30 min at 37˚C. Reverse transcription was performed using Superscript III (Invitrogen). 8 mL

RNA from the previous reaction, 1 mL 10 mM dNTP and 1 mL of the following oligo with custom

barcodes (underlined and bolded): 5’-Phos CA/TG/AC/GT-GATCGTCGGACTGTAGAACTCT/idSp/

CAAGCAGAAGACGGCATACGATTTTTTTTTTTTTTTTTTTTVN-3’ were incubated for 3 min at 75˚C
and then chilled on ice. 1.7 mL 10x RT buffer, 3 mL 25 mM MgCl2, 1.7 mL 0.1 M DTT, 0.5 mL SUPER-

ase-In, and 0.9 mL Superscript III reverse transcriptase was added to the reverse transcription reac-

tion and then incubated for 30 min at 48˚C. After cDNA synthesis, 2 mL exonuclease I (New England

Biolabs) was added to the reaction and incubated for 30 min at 37˚C. The enzyme was inactivated

and RNA hydrolyzed by adding 1 ml of 2 M NaOH and incubating for 20 min at 98˚C. The reaction

was then neutralized with 1 ml 2 M HCl. The cDNA was run on a 10% TBE-Urea gel (Invitrogen) and

the gel was stained using SYBR gold (ThermoFisher Scientific). cDNA sized ~120–350 nucleotides

were cut, gel purified, and precipitated overnight with ethanol and glycogen. Afterwards, cDNA was

circularized by resuspending precipitated DNA in 10 ml circularization mix (7.5 ml of water, 1 ml 10x

Reaction Buffer (Epicentre, Madison, WI), 0.5 ml of 1 mM ATP (final 0.05 mM), 0.5 ml of 50 mM

MnCl2 (final 2.5 mM), 0.5 ml CircLigase (100 m/ml), (Epicentre)). Circularization was performed for 1 hr

at 60˚C, and the reaction was heat-inactivated for 15 min at 85˚C. Circular single-stranded DNA was

re-linearized by adding 3.3 ml of re-linearization mix (4x mix containing 100 mM KCl and 2 mM DTT)

followed by 1 ml of APE 1 (15 m; New England Biolabs). The reaction was incubated for 45 min at

37˚C; an additional 1 ml APE 1 was added and the reaction was incubated for another 45 min. The

enzyme was inactivated by incubating for 20 min at 65˚C. The cDNA was amplified for 10–14 cycles

using 0.1 ml Phusion polymerase (New England Biolabs), 2 ml 5x HF buffer, 0.2 ml 10 mM dNTP, 1 ml

5 M betaine, 4.7 ml water, and 0.5 ml of the following 10 mM primers: 5’-CAA GCA GAA GAC GGC

ATA-3’ and 5’-AAT GAT ACG GCG ACC ACC GAC AGG TTC AGA GTT CTA CAG TCC GACG-3’.

The subsequent product was then gel purified from a 10% TBE gel (Invitrogen) using the ChIP DNA

Clean & Concentrator Kit (Zymo Research Corporation, Irvine, CA).

For the following RNA-Seq samples: one replicate of no treatment 6 hr, one replicate of no treat-

ment 24 hr, three replicates of polyinosinic-polycytidylic acid treatment 6 hr, two replicates of
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Pam3CSK4 treatment 6 hr, one replicate of Kdo2-lipid A treatment 6 hr, one replicate of IL4 treat-

ment 24 hr, and one replicate of Kdo2-lipid A and interferon-g treatment 24 hr, strand-specific RNA

sequencing libraries were prepared from poly(A) mRNA using a method similar to that previously

described (Wang, 2011) with modifications described herein. Briefly, poly(A) enriched mRNA was

fragmented, in 2x Superscript III first-strand buffer with 10 mM DTT (Invitrogen), by incubation at

94˚C for 9 min, then immediately chilled on ice before the next step. The 10 mL of fragmented

mRNA, 0.5 mL of random primer (Invitrogen), 0.5 mL of Oligo dT primer (Invitrogen), 0.5 mL of

SUPERase-In (Ambion), 1 mL of dNTPs (10 mM), and 1 mL of DTT (10 mM) were heated at 50˚C for

three minutes. At the end of incubation, 5.8 mL of water, 1 mL of DTT (100 mM), 0.1 mL Actinomycin

D (2 mg/mL), 0.2 mL of 1% Tween-20 (Sigma), and 0.2 mL of Superscript III (Invitrogen) were added

and incubated in a PCR machine using the following conditions: 25˚C for 10 min, 50˚C for 50 min,

and a 4˚C hold. The product was then purified with RNAClean XP beads according to manufacturer’s

instructions and eluted with 10 mL nuclease-free water. The RNA/cDNA double-stranded hybrid was

then added to 1.5 mL of Blue Buffer (Enzymatics, Beverly, MA), 1.1 mL of dUTP mix (10 mM dATP,

10 mM dCTP, 10 mM dGTP, and 20 mM dUTP), 0.2 mL of RNAse H (5 m/mL), 1.05 mL of water, 1 mL

of DNA polymerase I (Enzymatics), and 0.15 mL of 1% Tween-20. The mixture was incubated at 16˚C
for 1 hr. The resulting dUTP-marked dsDNA was purified using 28 mL of Sera-Mag Speedbeads

(Thermo Fisher Scientific), diluted with 20% PEG8000, 2.5 M NaCl to final of 13% PEG, eluted with

40 mL EB buffer (10 mM Tris-HCl, pH 8.5), and frozen at �80˚C. The purified dsDNA (40 mL) subse-

quently underwent end repair by blunting, poly(A)-tailing, and adapter ligation as described below.

All other RNA-Seq samples were prepared as described (Heinz et al., 2013). After RNA fragmen-

tation and re-buffering with the Micro Bio-Spin P-30 column (Bio-Rad) according to the manufac-

turer’s instructions, samples were resuspended with 16.5 ml of water. For de-capping using tobacco

acid pyrophosphatase (TAP) (Epicentre), the following was added to the reaction: 2 ml 10x TAP

buffer, 1 ml (20 m) SUPERase-In (Ambion), 0.5 ml TAP; the reaction was then incubated for 2 hr at

37˚C. Samples were then 3’ de-phosphorylated using T4 polynucleotide kinase (New England Biol-

abs); 0.5 ml 10x TAP buffer, 1.5 ml water, 0.5 ml 0.25 M MgCl2, 0.5 ml 10 mM ATP, and 1 mL PNK was

added to the reaction and incubated for 50 min at 37˚C. After de-phosphorylation, samples were

subsequently 5’ phosphorylated using T4 polynucleotide kinase in order to facilitate subsequent

adapter ligation processes; 10 mL 10x T4 DNA ligase buffer, 63 mL water, and 2 mL PNK was added

to the reaction and incubated for 60 min at 37˚C. TRIzol LS was used to quench the reaction and

extract phosphorylated RNA. RNA was resuspended in 4.5 mL water. For indexed library preparation,

the 3’ adapter (0.5 mL 9 mM of a 5’-adenylated sRNA 3’ MPX adapter /5Phos/AG ATC GGA AGA

GCA CAC GTC TGA /3AmMO/ (Integrated DNA Technologies, San Jose, CA)) was heat-denatured

together with the RNA for 2 min at 70˚C, placed on ice, and ligated with 100 U truncated T4 RNA

ligase 2 (K227Q, New England Biolabs) in 10 ml 1x T4 RNA ligase buffer without ATP, containing 20

U/mL SUPERase-In and 15% PEG8000 for 2 hr at 16˚C. Afterwards, 0.5 mL 10 mM MPX_RT primer 5’-

GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3’ (Integrated DNA Technologies,

desalted) was added and annealed to the ligation product by incubating at 75˚C for 2 min, then

37˚C for 30 min, and then 25˚C for 15 min. To ligate the 5’ adapter, 0.5 ml 5 mM hybrid DNA/RNA

sRNA 5’h adapter 5’-GTT CAG AGT TCT ACA rGrUrC rCrGrA rCrGrA rUrC-3’ (Integrated DNA

Technologies) was ligated to the 5’ end by adding 2 ml T4 RNA ligase buffer, 6 ml 50% PEG8000,

1 ml 10 mM ATP, 9.5 mL water, and 0.5 ml T4 RNA ligase 1 (New England Biolabs) for 90 min at 20˚C.
The reaction was then split in half (15 ml each) and 0.5 mL 10 mM MPX_RT primer was added to one

15 mL reaction. The reactions were incubated at 70˚C for 1 min, then placed on ice. Reverse tran-

scription was performed by adding 3 mL 10x RT buffer, 4.5 mL water, 1.5 mL 10 mM dNTP, 3 mL

0.1 M DTT, 1.5 mL RNaseOUT, and 1 mL Superscript III reverse transcriptase, then incubating for 30

min at 50˚C. The cDNA was amplified for 10–14 cycles using 0.5 mL Phusion polymerase, 10 mL 5x

HF buffer, 1 mL 10 mM dNTP, 5 mL 5 M betaine, and 0.25 mL of the following 100 mM primers: 5’-

AAT GAT ACG GCG ACC ACC GAC AGG TTC AGA GTT CTA CAG TCC GAC G-3’ and TruSeq-

compatible indexed primers (e.g. 5’-CAA GCA GAA GAC GGC ATA CGA GAT iii iii GTG ACT GGA

GTT CAG ACG TGT GCT CTT-3’ (desalted, Integrated DNA Technologies, i signifies index nucleoti-

des)). The subsequent product was then size selected for 175–225 base pair product and gel purified

from a 10% TBE gel (Invitrogen) using the ChIP DNA Clean & Concentrator Kit. Libraries were PCR-

amplified for 9–14 cycles, size selected by gel extraction, and quantified using the Qubit dsDNA HS

Assay Kit (Thermo Fisher Scientific).
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ChIP-Seq
Previously published Rev-erba and Rev-erbb ChIP-Seq, and NCoR ChIP-Seq experiments, deposited

as GSE45914 (Lam et al., 2013) and GSE27060 (Barish et al., 2012), respectively, were utilized for

analyses. Detailed protocols for ChIP-Seq experiments have been previously described

(Kaikkonen et al., 2013; Heinz et al., 2010, Heinz et al., 2013; Li et al., 2013). Antibodies against

Fos (sc-7202), Nrf2 (sc-13032x), p65 (sc-372), and PU.1 (sc-352x) were purchased from Santa Cruz

Biotechnology (Dallas, TX), against Smad3 (ab28379) from Abcam (Cambridge, UK), and against

H3K27ac (39135) from Active Motif (Carlsbad, CA). Briefly, for Fos, Nrf2, p65, and Smad3 ChIPs,

macrophages were first cross-linked in 2 mM dissuccinimidyl glutarate (Pierce

20593, Thermo Fischer) in PBS for 30 min, followed by subsequent 1% formaldehyde (Sigma) cross-

linking in PBS for 10 min at room temperature. For H3K27ac and PU.1 ChIPs, cells were cross-linked

using 1% formaldehyde in PBS for 10 min at room temperature. After cross-linking, glycine (Sigma)

was added to a final concentration of 0.2625 M to quench the reaction. Subsequently, cross-linked

macrophages were centrifuged (5 min, 1,200 RPM, 4˚C), washed twice with PBS, and pellets were

snap frozen and stored at �80˚C. For ChIP of H3K27ac, p65, PU.1, Nrf2 or Smad3, frozen cell pellets

were resuspended in cell lysis buffer (10 mM HEPES/KOH pH 7.9, 85 mM KCl, 1 mM EDTA, 1.0%

IGEPAL CA-630 (Sigma), 1x protease inhibitor cocktail (Roche, Basel, Switzerland), 1 mM PMSF).

After 5 min lysis on ice, cells were centrifuged (5 min, 4000 RPM, 4˚C), and the supernatant was

removed. The pellet was then resuspended in nuclear lysis buffer (10 mM Tris-HCl, pH 8.0, 100 mM

NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 0.5% N-lauroylsarcosine, 1x protease

inhibitor cocktail, and 1 mM PMSF) and the chromatin was sheared by sonication on wet ice with a

Bioruptor Standard Sonicator (Diagenode, Denville, NJ) for three 15 min cycles each alternating 30 s

on and 30 s off on the high setting. Additional Triton X-100 was added to the sonicated chromatin

to 10% of the final volume and the lysate was cleared by centrifugation (5 min, 14,000 RPM, 4˚C).

Input was then saved for subsequent analysis.

For Fos ChIP, pellets were suspended in 50 mM Tris pH 8.0, 60 mM KCl, 0.5% IGEPAL, 1x prote-

ase inhibitor cocktail, and 1 mM PMSF, followed by 10 min of incubation on ice and centrifugation

at 2000 �g for 3 min at 4˚C. The pellet was then suspended in 0.5% SDS, 10 mM EDTA, 0.5 mM

EGTA, 50 mM Tris pH 8.0, 1x protease inhibitor cocktail, and 1 mM PMSF. The chromatin suspen-

sion was sheared by sonication on wet ice with a Bioruptor Standard Sonicator for three 15 min

cycles each alternating 30 s on and 30 s off on the high setting, followed by centrifugation for 10

min at 15,000 RPM at 4˚C. The chromatin was diluted 5x with 1% Triton X-100, 2 mM EDTA,

150 mM NaCl, 20 mM Tris pH 8.0, 1x protease inhibitor cocktail, and 1 mM PMSF. An input sample

was saved for subsequent analysis.

Protein A or G Dynabeads (Invitrogen) pre-bound with antibody was added to the diluted cell

lysate overnight at 4˚C. Immunoprecipitated complexes were washed three times with 20 mM Tris/

HCl pH 7.4150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA, three times with 10 mM Tris/HCl

pH 7.4250 mM LiCl, 1% Triton X-100, 1% sodium deoxycholate, 1 mM EDTA, and two times with Tris-

EDTA plus 0.1% Tween-20 before eluting two times with 50 mL elution buffer (TE, 1% SDS, 30 and 10

min, room temperature). Elution buffer was also added to the input. After pooling the eluted samples,

the sodium concentration was adjusted to 300 mM and cross-links were reversed overnight at 65˚C.
Samples were treated with 0.5 mg/ml proteinase K for 1 hr at 55˚C and 0.25 mg/ml RNase A for 1 hr at

37˚C before DNA was isolated using the ChIP DNA Clean and Concentrator Kit according to the manu-

facturer’s instructions. For library preparation, NEXTflex DNA barcode adaptors (BioO

Scientific, Austin, TX) were ligated to the genomic DNA. Polymerase chain reaction mediated library

amplification was performed and final libraries were size selected on 10% TBE gels (Invitrogen).

High-throughput sequencing and data processing
RNA-Seq and ChIP-Seq libraries were sequenced for 50 cycles on an Illumina Hi-Seq 2000 (Illumina,

San Diego, CA), sequenced for 51 cycles on an Illumina Hi-Seq 4000, or sequenced for 51 cycles on

an Illumina NextSeq 2500 according to the manufacturer’s instructions. ChIP-Seq reads were

mapped to the mouse NCBI37/mm9 (Ferreyra Garrott et al., 2013) assembly using Bowtie

(Langmead et al., 2009), allowing up to two mismatches. RNA-Seq reads were mapped to the

mouse NCBI37/mm9 (Ferreyra Garrott et al., 2013) assembly using Tophat (Trapnell et al., 2009).

Mapped reads were visualized using the UCSC genome browser (Kent et al., 2002) and
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downstream data processing was performed using HOMER (Heinz et al., 2010), and R (Garcı́a-

Oltra et al., 2013).

Genome-wide gene expression analysis with RNA-Seq
RNA-Seq analysis of genome-wide gene expression was performed using HOMER (Heinz et al.,

2010). Differential expression was defined by a fold-change of at least 1.5-fold averaging over repli-

cated datasets. For heatmap analysis, genes were clustered using k-means clustering (k = 10) in R.

Gene ontology analysis was performed using DAVID Bioinformatics Resources 6.7 (Huang et al.,

2009a, 2009b).

ChIP-Seq analysis
Genomic histone acetylation regions and transcription factor peaks were determined with HOMER

using the findPeaks command default parameters of four-fold enrichment over the input, four-fold

enrichment over local background, and normalization to 10 million mapped reads. For transcription

factors, peaks were called using the ’–style factor’ parameter while histone acetylation regions were

called using the ’–style region’ parameter. Histone regions were centered on nucleosome free

regions using the ’–nfr’ parameter. For comparisons, called peaks from different data sets were

merged using the mergePeaks command. Merging of transcription factor peaks or histone regions

was done using the parameter ’–size given’. To obtain differentially bound peaks/regions, tags were

quantified from two data sets using the getDifferentialPeaks command. Peaks/regions were called

as differentially gained if they had a four-fold enrichment of tag counts over the untreated/vehicle

condition and a cumulative Poisson p-value less than 0.001. For heatmap analysis, peaks were clus-

tered using hierarchical clustering in R.

Bone marrow transplantation
Bone marrow harvested from WT and Rev-erb DKO mice was injected via the retro-orbital route into

lethally irradiated (10 Gy) B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) (Jackson Lab, Sacramento, CA) or

C57BL/6J (Harlem (now Envigo), Indianapolis, IN) 8 week old wild type congenic mice. Approxi-

mately 6–7 million bone marrow cells were injected per mouse. Transplanted mice were housed in

autoclaved cages (changed every two days) and supplemented with antibiotics the day before irradi-

ation until two weeks post-transplantation.

Evaluating bone marrow transplant efficiency
To evaluate bone marrow transplant efficiency, whole blood from WT and Rev-erb DKO bone mar-

row transplanted mice was collected through cardiac puncture into EDTA tubes (Becton Dickinson,

Franklin Lakes, NJ). 100 mL whole blood was washed once with PBS and resuspended in 2% FBS in

PBS. Samples were blocked with 1 mL anti-mouse CD16/32 (eBioscience, San Diego, CA, 14-0161-

82) for 15 min at room temperature. The following antibodies were utilized for staining: CD45 (Biole-

gend, San Diego, CA, 103122) and CD45.2 (Biolegend, 109813). Samples were incubated with

directly labeled antibodies for 40 min (4˚C in the dark). Stained cells were washed with 0.1% BSA in

PBS, pelleted (1200 RPM, 5 min, 4˚C), and lysed with hemolysin (Beckman Coulter, Brea, CA) for 20

s. Samples were quenched with 10x PBS, diluted, and gently washed before analysis using a LSR II

flow cytometer (BD Bioscience, San Jose, CA). Unstained and single stains were used for setting up

compensations and gating. Events were first gated on forward and side scatter to determine single

events, before evaluation of other fluorescent markers.

Monocyte enumeration from peripheral blood
Blood was collected from 16 chimeric mice per genotype into 0.5 ml K3 EDTA coated tubes. The

volume of the blood was determined by pipetting and transferred to 5 ml round bottom tubes with

50 ml of Life Technologies (Carlsbad, CA) CountBright Absolute Counting Beads. Erythrocytes were

lysed by addition of 4 ml eBioscience RBC lysis buffer with incubation at 4C for 5 mins. Cells were

collected by centrifugation and the supernatant was carefully removed. Cells were washed once

more and resuspended in buffer containing anti-CD16/CD32 (clone 93, BioLegend) and Zombie

Aqua fixable viability dye (BioLegend). After 10 min, cells were stained with the following 2X anti-

body cocktail: anti-mouse CD11b BD Horizon BUV395 (clone M1/70, BD Biosciences), anti-mouse
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CD19 BD Horizon BUV737 (clone1D3, BD Biosciences), anti-mouse CD115 Brilliant Violet 421 (clone

AFS98, BioLegend), anti-mouse CD90.2 Brilliant Violet 785 (clone 30-H12, BioLegend), anti-mouse

Ly6G FITC (clone 1A8, BioLegend), anti-mouse CD45.2 PE (clone 104, BioLegend), anti-mouse

CD45.1 Alexa Fluor 647 (clone A20, BioLegend), and anti-mouse Ly6C APC/Cy7 (clone HK1.4, BioLe-

gend). After 20 min, cells were washed, and counted on a Beckman Colter MoFlo Astrios EQ

equipped with 355 nm, 405 nm, 488 nm, 561 nm and 640 nm lasers. Cells per ml were determined

by following the manufacturer protocol for CountBright Absolute Counting Beads. Cells of interest

were identified by excluding Zombie Aqua that fell within consecutive singlet gates using SSC and

FSC. Donor derived monocytes were identified as CD45.2+, CD19-, CD90.2-, CD115+, Ly6G-, and

CD11b+. Monocytes were further segregated based on expression of Ly6C. To test the dependence

on hematopoietic derived expression of Rev-erb a/b on peripheral blood cell populations, we used

a Welch two sample t-test using R.

Wound healing studies
Wound healing studies were conducted 6–10 weeks post-transplantation. Briefly, 15.5 mL tert-amyl

alcohol was added to 25 grams of 2,2,2 tribromoethanol (Sigma Aldrich Chemical) and dissolved

overnight in a dark bottle to generate a stock solution. The subsequent solution was diluted with

PBS, dissolved overnight, and filtered through a 0.2 mm filter to generate a working solution (20 mg/

ml). To achieve anesthesia, 0.4–0.75 mg/g was administered intra-peritoneally. A 3 mm punch biopsy

(Miltex, York, PA) was used to generate four wounds on the dorsal skin of each animal. Wounds

were systematically photographed from a fixed distance daily. For macroscopic analysis, genotypes

were blinded and the size of the wound was analyzed by Adobe Photoshop (San Jose, CA), and nor-

malized to its size on Day 0. Mice were housed singularly throughout the duration of the study.

To assess the contribution of Rev-erb to wound healing, data from three independent experi-

ments were combined and analyzed using a linear mixed effects model (Garcı́a-Gil et al., 2012)

using the R package ’nlme’ (R script: wound model <- lme(’wound size’ ~ ’genotype’ * ’time point’,

random=~1 | ’independent experiment’ /’independent mouse’ /’nested observation’, data=data.file,

na.action=’na.exclude’). Genotype, time point, and their interaction, were modeled as fixed effects,

whereas the observations at wound sites were treated as a random effect nested within the indepen-

dent mouse, which in turn was treated as a random effect nested within the independent experi-

ment, to account for the hierarchical nature of the study design. The numbers of biologically

independent mice per time point are summarized in the below table.

Day WT chimera Rev-erb DKO chimera

0 29 28

1 28 27

2 26 25

3 17 17

4 21 20

5 22 20

6 22 20

7 13 12

8 20 16

9 12 9

10 7 7

11 12 9

12 7 7

Histological analyses
At the indicated time points, mice were euthanized and wounds were harvested using a 6 mm punch

biopsy (Miltex). Harvested wounds were cut along the mid-sagittal plane and paraffin-embedded.
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Genotypes were blinded for subsequent histological analyses. The first section along the mid-sagittal

plane was utilized for hematoxylin and eosin staining. Subsequent sections were utilized for immuno-

histochemical analysis using the following primary antibodies: biotinylated anti-F4/80 (AbD

Serotec (now Bio-Rad), MCA4978, 1:50 dilution), IgG (Dako, Glostrup Municipality, Denmark), rat

anti-Ly6B.2 (AbD Serotec (now Bio-Rad), MCA771GA, 1:200), and the following secondary antibod-

ies: biotinylated anti-rat (1:500, BD ), as well as HRP-conjugated streptavidin (1:500, Jackson Labora-

tory), Briefly, slides were de-paraffinized and washed three times in 0.1% Tween-20 PBS. Blocking

was performed sequentially using 3% hydrogen peroxide (10 min), 1% BSA in 0.1% Tween-20 PBS

(10 min), 0.1% avidin (10 min), and 0.01% biotin (10 min). Three washes were performed between

each blocking step using 0.1% Tween-20 PBS. Antigen retrieval was performed using proteinase K

(Dako, S3020), followed by three washes and subsequent overnight incubation with the indicated

primary antibodies. After three washes, slides were incubated with the indicated secondary antibod-

ies for 30 min and developed using AEC Peroxidase Substrate Kit (Vector Labs, Burlingame, CA, SK-

4200) according to the manufacturer’s instructions. Counterstaining was performed using Mayer’s

Hematoxylin (Sigma, MHS16), after which samples were mounted in an aqueous gel mount (Vecta-

mount, Vector Labs, H-5501).

In vitro matrigel migration assays
In vitro matrigel migration assays were performed as previously described (Ogawa et al., 2004).

Briefly, macrophages were cultured in RPMI-1640 (Invitrogen) supplemented with 0.5% heat-inacti-

vated FBS (Hyclone) for 24 hr and resuspended at a density of 1 million cells per milliliter. 100 mL of

macrophages was added to the top chamber of a transwell (Corning, Corning, NY) while 650 mL of

media was added to the bottom chamber. Macrophages were allowed to migrate through basement

membrane extract (Corning, 3458) for 24 hr. Afterwards, the wells were briefly washed with PBS,

and migrated macrophages were dissociated from the membrane and incubated with Calcein AM.

Relative fluorescence was measured using a SpectraMax M3 plate reader (Molecular Devices, Sunny-

vale, CA) and the SoftMax Pro software (485 nm excitation, 520 nm emission). A standard curve was

used to convert relative fluorescence to cell numbers.

Sequencing data
All sequencing data used in this manuscript has been submitted to GEO under the accession

GSE72964. This data can be accessed by reviewers through the following link: http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?token=ejixaiswxlqnjiv&acc=GSE72964.
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