20 research outputs found

    Main Aspects in Technologies of Working with Youth in Social Media and Internet Space

    Full text link
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ основныС характСристики соврСмСнных общСствСнных явлСний, связанных с Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ влияниС Π½Π° молодСТь ΠΈ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Ρ€Π°Π±ΠΎΡ‚Π΅ с молодСТью. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ соцопроса ΠΏΠΎ вопросам повСдСнчСских особСнностСй ΠΌΠΎΠ»ΠΎΠ΄Π΅ΠΆΠΈ Π² соцсСтях. На основС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² опроса Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ аспСкты Π² Ρ€Π°Π±ΠΎΡ‚Π΅ с молодСТью Π² соцсСтях.The article examines the following characteristics of modern phenomena that cause an impact on youth and require new approaches to working with youth. The data of the social a survey aimed at studying the behavioral characteristics of young people in the social. Networks. Based on the survey results, key aspects of working with youth in social networks were identified networks

    VECTORS OF HETERONOMY AND AUTONOMY IN THE VALUE AND ETHICAL AGENDA OF CONTEMPORARY ART

    Full text link
    Π’ нашСм рассмотрСнии прСдставлСны Ρ‚Ρ€ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°: оппозиция Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ½ΠΎΠΌΠΈΠΈ ΠΈ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠΈΠΈ ΠΊΠ°ΠΊ исходная Π² описании явлСний ΠΌΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ, которая ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ ΠΈΡ… Ρ†Π΅Π½Π½ΠΎΡΡ‚Π½ΡƒΡŽ балансировку; ΡΠ²Π΅Ρ€Π½ΡƒΡ‚ΡƒΡŽ характСристику этой ΠΎΠΏΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π² ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ искусства ΠΊ соврСмСнному ΠΈΠ»ΠΈ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ, contemporary arts, Π² Π΅Π³ΠΎ спСцифичСском устроСнии ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ; Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π² этой связи особой ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½ΠΎΠΉ цСнностно-этичСской повСстки этого искусства Π½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ Π£Ρ€Π°Π»ΡŒΡΠΊΠΈΡ… ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±ΠΈΠ΅Π½Π½Π°Π»Π΅ ΠΈ ΠΈΠ½Ρ‹Ρ… худоТСствСнных ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠ². ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² внСшнСго, Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ½ΠΎΠΌΠ½ΠΎΠ³ΠΎ, ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ, Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠ³ΠΎ, рСгулирования Π² создании, восприятии ΠΈ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ² искусства ΠΈΠΌΠ΅Π΅Ρ‚ свои историчСскиС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ особоС этико-эстСтичСскоС ΠΏΠ΅Ρ€Π΅ΠΏΠ»Π΅Ρ‚Π΅Π½ΠΈΠ΅, усилСнноС авторским творчСским Π½Π°Ρ‡Π°Π»ΠΎΠΌ.In our review, three components are presented: the opposition to heteronomy and autonomy as the starting point in describing the phenomena of moral life, which implies their value balancing; a curtailed characteristic of this opposition in the evolution of fine art to the modern or actual, contemporary arts, in its specific structure and functioning; the allocation in this regard of a special problematic value-ethical agenda of this art based on the material of the Ural industrial biennales and other art projects. The relation of vectors of external, heteronomous, and internal, Autonomous, regulation in the creation, perception and understanding of art objects has its own historical modifications and a special ethical and aesthetic intertwining, reinforced by the author's creative beginning

    Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes

    Get PDF
    open263siWe acknowledge support by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118), Scientific Grant Agency VEGA(GrantNo.2/0101/18), as well as by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 677232)Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.openKwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y.Kwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y

    Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate. Β© Copyright Β© 2021 Kwon, Shibata, Kepfer-Rojas, Schmidt, Larsen, Beier, Berg, Verheyen, Lamarque, Hagedorn, Eisenhauer, Djukic and TeaComposition Network

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme

    Spectroscopic behavior of pyrrolanthrone and its derivative in aprotic and protic solvents

    Get PDF
    Recently synthesized pyrrolanthrone, naphtho[1,2,3-cd]indole-6(2H)-one (PyAn), and its water-soluble derivative, 3(naphtho[1,2,3-cd]indole-6(2H)-one-2-yl) sodium propylsulfonate, are very promising for anticancer therapy due to both the fluorescent and cytotoxic properties. The present study is focused on the spectroscopic analysis of solvent effects in PyAn and its derivative. An increase of the solvent polarity results in the bathochromic shift in emission and absorption spectra that indicates the involvement of Ο€Ο€βˆ—-type transition. The double linear correlation of Stokes shift with bulk solvent polarity functions (in terms of Lippert's, Bakhshiev's and Chamma-Viallet's models) and microscopic solvent polarity parameter E(30)T for aprotic and protic solvents is observed. Both general and specific solvent effects are revealed for the solute-solvent systems. Fluorescence quantum yield, fluorescence lifetime and excited-state dipole moment were defined for PyAn and its derivative in different solvents for the first time. The obtained information is of a great importance for the characterization of intermolecular interactions of drugs with biomolecules for the development of new drug delivery systems

    Spectroscopic behavior of pyrrolanthrone and its derivative in aprotic and protic solvents

    Get PDF
    Recently synthesized pyrrolanthrone, naphtho[1,2,3-cd]indole-6(2H)-one (PyAn), and its water-soluble derivative, 3(naphtho[1,2,3-cd]indole-6(2H)-one-2-yl) sodium propylsulfonate, are very promising for anticancer therapy due to both the fluorescent and cytotoxic properties. The present study is focused on the spectroscopic analysis of solvent effects in PyAn and its derivative. An increase of the solvent polarity results in the bathochromic shift in emission and absorption spectra that indicates the involvement of Ο€Ο€βˆ—-type transition. The double linear correlation of Stokes shift with bulk solvent polarity functions (in terms of Lippert's, Bakhshiev's and Chamma-Viallet's models) and microscopic solvent polarity parameter () 30 N ET for aprotic and protic solvents is observed. Both general and specific solvent effects are revealed for the solute-solvent systems. Fluorescence quantum yield, fluorescence lifetime and excited-state dipole moment were defined for PyAn and its derivative in different solvents for the first time. The obtained information is of a great importance for the characterization of intermolecular interactions of drugs with biomolecules for the development of new drug delivery systems

    Implants inserted in fresh-frozen bone: a retrospective analysis of 88 implants loaded 4 months after insertion

    No full text
    OBJECTIVE: In the previous decade, several reports have been published regarding implants inserted in autografts, but none have analyzed implants inserted in fresh-frozen bone allografts. Thus, a retrospective study was planned to verify if 4-months' delay from grafting to implant insertion is a safe period before prosthetic rehabilitation of implants placed in fresh-frozen bone allografts. METHOD AND MATERIALS: Between December 2003 and December 2006, 22 patients (10 women and 12 men with a median age of 51 years) underwent grafting with horizontal augmentation without membrane and 88 implants inserted thereafter. The mean implant follow-up was 27 months. Implants used were 30 double etched (3i, Osseotite, Biomet), 10 SLA1 (Astratech), 26 anodic oxidized (Nobel Biocare), 12 CaPO4 ceramic-blasted (Lifecore Biomedical), 7 SLA2 (Sweden and Martina Spa), 2 ITI (Straumann), and 1 Biotec (Povolaro di Dueville). Implant diameter and length ranged from 3.25 to 5.0 mm and from 8.0 to 15.0 mm, respectively. Implants were inserted to replace 10 incisors, 7 canines, 36 premolars, and 35 molars. RESULTS: No implants were lost (ie, survival rate = 100\%). No difference was detected when comparing implants loaded after 4 months versus those loaded after 6 or more months (209 implants). CONCLUSION: Four-months' delay from grafting to implant insertion is a safe period to obtain a high survival rate and success rate for implants inserted in fresh-frozen bone
    corecore