125 research outputs found

    Non-linear coupled approach for the evaluation of seismic slope displacements

    Get PDF
    The design procedures to evaluate earthquake-induced sliding displacements typically refer to three different approaches: simplified methods; displacements methods and advanced dynamic methods. In the first class of methods, empirical relationships are used to predict the permanent slope displacement. The second class includes simplified dynamic analysis, by means of the conventional Newmark rigid block model, as well as through its improvements to account for soil deformability. The dynamic site response and the sliding block displacements are computed separately in the “decoupled” approach or simultaneously in the “coupled” analysis (stick-slip model). The advanced dynamic methods are based on finite element (FEM) or finite difference (FDM) formulations, which permit to account for topography and heterogeneity by two or three dimensional analysis. The paper describes the developments of a 1D lumped-mass stick-slip model for a layered subsoil including more generalized assumptions than a previous version (Ausilio et al., 2008). The depth of the sliding surface is considered not necessarily coincident with that of the bedrock, and located in a generic layer. This latter can be identified during the analysis. In the non-linear site response analysis, a recent soil damping formulation was used (Phillips & Hashash, 2009). In this formulation, a reduction factor modifying the extended Masing loading/unloading strain-stress relationship was introduced. The predictions of the coupled stick-slip model with non-linear soil behaviour were compared with the results of the equivalent linear approach for ideal slopes to show the effects of non linearity on seismic performance. Besides, the results show that the sliding surface depth, automatically researched, is function of main ground motion parameters

    EVALUATION OF SEISMIC DEMAND FOR EARTHQUAKE-TRIGGERED LANDSLIDES

    Get PDF
    Landslides are one of the most commonly observed territorial effects after a strong-motion seismic event. Although landslides are considered a secondary hazard to human lives, as compared with the safety of the buildings, they can cause significant damage to infrastructure networks that determine problems in the immediate post-earthquake during the emergency and reconstruction phases. Therefore it is important to calibrate reliable procedures for regional-scale assessment of seismic landslide susceptibility and hazard. The tools available for assessing regional-scale stability of slopes are empirically related to the earthquake intensity, yet they often provide poor useful information for practical purposes. The technical literature proposes several methods that allow for estimating slope performance under dynamic conditions or are able to evaluate effectively the parameters required for the procedures most commonly used in practice. This note briefly outlines the criteria for extending to the regional scale the procedures proposed by Tropeano et al. (2017) for assessing the site-specific performance of slopes during a strong-motion earthquake. A preliminary application is also shown for the main events of 2016 seismic sequence in Central Italy

    Some Remarks on the Seismic Design of Multipropped Retaining Walls

    Get PDF
    The behavior under seismic condition of embedded retaining structures is quite complex. When the geometry (prop levels) prevents the formation of kinematic mechanisms and the structural elements do not achieve yield strength conditions, permanent displacements are expected to be relatively low and, therefore, seismic actions may cause significant increases of the forces acting on the structures: these forces are dependent on a number of factors such as the characteristics of the ground motion, the problem geometry, the mechanical behavior of the soil and the soil-structure relative stiffness. In the present study, the results of several dynamic numerical analyses of a multi-propped retaining wall in a dry coarse soil are presented and discussed. The results of the analyses indicate that large structural stresses (bending moments in walls and axial loads on props) develop as consequence of seismic actions. Post seismic stresses remain significantly large as compared to the static condition. The maximum ground acceleration in the free-field seems not to be an effective parameter in order to evaluate the seismic performance of this kind of retaining structures

    Non-synchronous earthquake motion in bridges design

    Get PDF
    The study aims to further develop, with respect to previous findings, and validate structural design criteria which account for the effects of earthquakes spatial variability. In past works [Nuti, C. and Vanzi. I. (2004) & (2005); Carnevale, L. et al. (2010)] the two simplest forms of this problem were dealt with: differential displacements between two points belonging to the soil or to two single degree of freedom structures. Existing codes appear indeed improvable on this aspect. For the differential displacements of two points on the ground, these results are generalized with different response spectra and validated using (indeed a small set of) real recordings. For the experimental validation, the first obtained results point towards an acceptable agreement of model vs. experimental results [Tropeano, G. et al. (2011)]. In any case, results indicate that the design codes can be improved on this topic, both for the two points (e.g. simply supported decks) and the multiple points (e.g. continuous decks on multiple piers) cases

    Seismic Response of Bridges Accounting for Soil-Structure Interaction effects and the Non-Synchronous Ground Motion due to 1D and 2D site analysis.

    Get PDF
    This work focuses on the effects of soil-structure interaction and the spatial variability of seismic motion due to site effects on the seismic response of a multi-span viaduct on pile foundations. In particular, site effects induced in a soft clay deposit by an inclined bedrock layout are evaluated through different models, characterised by an increasing level of accuracy, which allows determining the free-field motion that is adopted to perform soilstructure interaction analyses in the frame of the substructure approach. The seismic input is represented at the outcropping bedrock by a set of suitably selected and scaled real accelerograms. After a brief presentation of the adopted numerical procedure, analyses results are presented focusing on both site and structural response. Amplifications effects obtained from simplified linear equivalent 1D and nonlinear 2D site response models are compared, discussing the applicability of the simplified approach. Structural responses, obtained by considering the non-synchronous motion resulting from the local stratigraphic conditions, in conjunction with soil-structure interaction effects, are shown in terms of piers displacement and ductility demands. Furthermore, the role of soil structure interaction is clarified comparing results with those obtained from fixed base bridge models, proving that its contribution is more significant if the simplified model for site response is adopted

    Tidal signatures in Neogene to Quaternary mixed deposits of southern Italy straits and bays

    Get PDF
    Some of the Neogene to Quaternary sedimentary successions cropping out in the southern Italy orogenic belt exhibit distinct stratigraphic intervals of mixed, silici-bioclastic arenites. These deposits represent bay- and strait-fill successions that accumulated during tectonically-driven, rapid transgressions in peripheral marine basins of the central Mediterranean, experiencing microtidal conditions similar to those presently existing in the Mediterranean Sea. The Upper Miocene to Middle Pleistocene successions of Basilicata, Calabria and NE Sicily, show laterallyaccreted, cross-strata of mixed composition, with the siliciclastic fraction derived from either sedimentary or metamorphic rocks and the bioclastic fraction produced by an in situ or near situ heterozoan factory. Tidal cyclicity of semi-diurnal and diurnal to monthly and yearly periodicities has been detected in the studied deposits, where tidal bundling is revealed by the rhythmic alternation of siliciclastic and bioclastic set of laminae, repeated according to different cycles. This rhythmic signature appears to be more evident where randomly-occurring processes, such as waves, storms and currents, were mitigated by engulfed or strait palaeo-settings. Palaeo-bays preserved short-term tidal cycles in shoreface to offshore-transition mixed deposits because hydrodynamically isolated from open marine conditions and therefore subjected to tidal influence only during fair-weather periods. On the contrary, palaeo-straits recorded tidal cyclicities of longer duration in deeper mixed deposits subjected to steady tidal currents

    PRENOLIN project. Results of the validation phase at sendai site

    Get PDF
    One of the objectives of the PRENOLIN project is the assessment of uncertainties associated with non-linear simulation of 1D site effects. An international benchmark is underway to test several numerical codes, including various non-linear soil constitutive models, to compute the non-linear seismic site response. The preliminary verification phase (i.e. comparison between numerical codes on simple, idealistic cases) is now followed by the validation phase, which compares predictions of such numerical estimations with actual strong motion data recorded from well-known sites. The benchmark presently involves 21 teams and 21 different non-linear computations. Extensive site characterization was performed at three sites of the Japanese KiK-net and PARI networks. This paper focuses on SENDAI site. The first results indicate that a careful analysis of the data for the lab measurement is required. The linear site response is overestimated while the non-linear effects are underestimated in the first iteration. According to these observations, a first set of recommendations for defining the non-linear soil parameters from lab measurements is proposed. PRENOLIN is part of two larger projects: SINAPS@, funded by the ANR (French National Research Agency) and SIGMA, funded by a consortium of nuclear operators (EDF, CEA, AREVA, ENL)

    Earthquake Geotechnical Engineering Aspects of the 2012 Emilia-Romagna Earthquake (Italy)

    Get PDF
    On May 20, 2012 an earthquake of magnitude ML=5.9 struck the Emilia Romagna Region of Italy and a little portion of Lombardia Region. Successive earthquakes occurred on May 29, 2012 with ML=5.8 and ML=5.3. The earthquakes caused 27 deaths, of which 13 on industrial buildings. The damage was considerable. 12,000 buildings were severely damaged; big damages occurred also to monuments and cultural heritage of Italy, causing the collapse of 147 campaniles. The damage is estimated in about 5-6 billions of euro. To the damage caused to people and buildings, must be summed the indirect damage due to loss of industrial production and to the impossibility to operate for several months. The indirect damage could be bigger than the direct damage caused by the earthquake. The resilience of the damaged cities to the damage to the industrial buildings and the lifelines was good enough, because some industries built a smart campus to start again to operate in less of one month and structural and geotechnical guidelines were edited to start with the recovering the damage industrial buildings. In the paper a damage survey is presented and linked with the ground effects. Among these, soil amplification and liquefaction phenomena are analyzed, basing on the soil properties evaluation by field and laboratory tests. Particular emphasis is devoted to the damaged suffered by the industrial buildings and to the aspects of the remedial work linked with the shallow foundation inadequacy and to the liquefaction mitigation effects
    • …
    corecore