1,404 research outputs found

    Higher Dimensional Gravity, Propagating Torsion and AdS Gauge Invariance

    Full text link
    The most general theory of gravity in d-dimensions which leads to second order field equations for the metric has [(d-1)/2] free parameters. It is shown that requiring the theory to have the maximum possible number of degrees of freedom, fixes these parameters in terms of the gravitational and the cosmological constants. In odd dimensions, the Lagrangian is a Chern-Simons form for the (A)dS or Poincare groups. In even dimensions, the action has a Born-Infeld-like form. Torsion may occur explicitly in the Lagrangian in the parity-odd sector and the torsional pieces respect local (A)dS symmetry for d=4k-1 only. These torsional Lagrangians are related to the Chern-Pontryagin characters for the (A)dS group. The additional coefficients in front of these new terms in the Lagrangian are shown to be quantized.Comment: 10 pages, two columns, no figures, title changed in journal, final version to appear in Class. Quant. Gra

    Simple compactifications and Black p-branes in Gauss-Bonnet and Lovelock Theories

    Get PDF
    We look for the existence of asymptotically flat simple compactifications of the form MD−p×TpM_{D-p}\times T^{p} in DD-dimensional gravity theories with higher powers of the curvature. Assuming the manifold MD−pM_{D-p} to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on pp and the spacetime dimension, the metric on MD−pM_{D-p} may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic pp-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if MD−pM_{D-p} is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black pp-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories.Comment: 30 pages, no figures, few typos fixed, references added, final version for JHE

    Junction conditions in General Relativity with spin sources

    Full text link
    The junction conditions for General Relativity in the presence of domain walls with intrinsic spin are derived in three and higher dimensions. A stress tensor and a spin current can be defined just by requiring the existence of a well defined volume element instead of an induced metric, so as to allow for generic torsion sources. In general, when the torsion is localized on the domain wall, it is necessary to relax the continuity of the tangential components of the vielbein. In fact it is found that the spin current is proportional to the jump in the vielbein and the stress-energy tensor is proportional to the jump in the spin connection. The consistency of the junction conditions implies a constraint between the direction of flow of energy and the orientation of the spin. As an application, we derive the circularly symmetric solutions for both the rotating string with tension and the spinning dust string in three dimensions. The rotating string with tension generates a rotating truncated cone outside and a flat space-time with inevitable frame dragging inside. In the case of a string made of spinning dust, in opposition to the previous case no frame dragging is present inside, so that in this sense, the dragging effect can be "shielded" by considering spinning instead of rotating sources. Both solutions are consistently lifted as cylinders in the four-dimensional case.Comment: 24 pages, no figures, CECS style. References added and misprints corrected. Published Versio

    Green's function formalism for spin transport in metal-insulator-metal heterostructures

    Full text link
    We develop a Green's function formalism for spin transport through heterostructures that contain metallic leads and insulating ferromagnets. While this formalism in principle allows for the inclusion of various magnonic interactions, we focus on Gilbert damping. As an application, we consider ballistic spin transport by exchange magnons in a metal-insulator-metal heterostructure with and without disorder. For the former case, we show that the interplay between disorder and Gilbert damping leads to spin current fluctuations. For the case without disorder, we obtain the dependence of the transmitted spin current on the thickness of the ferromagnet. Moreover, we show that the results of the Green's function formalism agree in the clean and continuum limit with those obtained from the linearized stochastic Landau-Lifshitz-Gilbert equation. The developed Green's function formalism is a natural starting point for numerical studies of magnon transport in heterostructures that contain normal metals and magnetic insulators.Comment: 13 pages, 8 figure

    Transgression forms and extensions of Chern-Simons gauge theories

    Full text link
    A gauge invariant action principle, based on the idea of transgression forms, is proposed. The action extends the Chern-Simons form by the addition of a boundary term that makes the action gauge invariant (and not just quasi-invariant). Interpreting the spacetime manifold as cobordant to another one, the duplication of gauge fields in spacetime is avoided. The advantages of this approach are particularly noticeable for the gravitation theory described by a Chern-Simons lagrangian for the AdS group, in which case the action is regularized and finite for black hole geometries in diverse situations. Black hole thermodynamics is correctly reproduced using either a background field approach or a background-independent setting, even in cases with asymptotically nontrivial topologies. It is shown that the energy found from the thermodynamic analysis agrees with the surface integral obtained by direct application of Noether's theorem.Comment: 28 pages, no figures. Minor changes in the introduction, final comments and reference
    • …
    corecore