1,795 research outputs found

    Electron inertia and quasi-neutrality in the Weibel instability

    Get PDF
    While electron kinetic effects are well known to be of fundamental importance in several situations, the electron mean-flow inertia is often neglected when lengthscales below the electron skin depth become irrelevant. This has led to the formulation of different reduced models, where electron inertia terms are discarded while retaining some or all kinetic effects. Upon considering general full-orbit particle trajectories, this paper compares the dispersion relations emerging from such models in the case of the Weibel instability. As a result, the question of how lengthscales below the electron skin depth can be neglected in a kinetic treatment emerges as an unsolved problem, since all current theories suffer from drawbacks of different nature. Alternatively, we discuss fully kinetic theories that remove all these drawbacks by restricting to frequencies well below the plasma frequency of both ions and electrons. By giving up on the lengthscale restrictions appearing in previous works, these models are obtained by assuming quasi-neutrality in the full Maxwell-Vlasov system.Comment: 25pages; 7 figures. Submitted to J. Plasma Phys. Special issue contribution, on the occasion of the Vlasovia 2016 conferenc

    Serotonin system implication in L-DOPA-induced dyskinesia: from animal models to clinical investigations

    Get PDF
    In the recent years, the serotonin system has emerged as a key player in the induction of l-DOPA-induced dyskinesia (LID) in animal models of Parkinson's disease. In fact, serotonin neurons possess the enzymatic machinery able to convert exogenous l-DOPA to dopamine (DA), and mediate its vesicular storage and release. However, serotonin neurons lack a feedback control mechanism able to regulate synaptic DA levels. While in a situation of partial DA depletion spared DA terminals can buffer DA released from serotonin neurons, the progression of DA neuron degeneration impairs this protective mechanism, causing swings in synaptic DA levels and pulsatile stimulation of post-synaptic DA receptors. In line with this view, removal of serotonin neurons by selective toxin, or pharmacological silencing of their activity, produced complete suppression of LID in animal models of Parkinson's disease. In this article, we will revise the experimental evidence pointing to the important role of serotonin neurons in dyskinesia, and we will discuss the clinical implications. © 2014 Carta and Tronci

    Momentum maps for mixed states in quantum and classical mechanics

    Full text link
    This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Berry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmann's density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.Comment: 20 pages; no figures. To appear in J. Geom. Mec

    The helicity and vorticity of liquid crystal flows

    Full text link
    We present explicit expressions of the helicity conservation in nematic liquid crystal flows, for both the Ericksen-Leslie and Landau-de Gennes theories. This is done by using a minimal coupling argument that leads to an Euler-like equation for a modified vorticity involving both velocity and structure fields (e.g. director and alignment tensor). This equation for the modified vorticity shares many relevant properties with ideal fluid dynamics and it allows for vortex filament configurations as well as point vortices in 2D. We extend all these results to particles of arbitrary shape by considering systems with fully broken rotational symmetry.Comment: 22 pages; no figure

    Equivalent variational approaches to biaxial liquid crystal dynamics

    Full text link
    Within the framework of liquid crystal flows, the Qian & Sheng (QS) model for Q-tensor dynamics is compared to the Volovik & Kats (VK) theory of biaxial nematics by using Hamilton's variational principle. Under the assumption of rotational dynamics for the Q-tensor, the variational principles underling the two theories are equivalent and the conservative VK theory emerges as a specialization of the QS model. Also, after presenting a micropolar variant of the VK model, Rayleigh dissipation is included in the treatment. Finally, the treatment is extended to account for nontrivial eigenvalue dynamics in the VK model and this is done by considering the effect of scaling factors in the evolution of the Q-tensor.Comment: 8 pages. Third versio

    A Lagrangian kinetic model for collisionless magnetic reconnection

    Get PDF
    A new fully kinetic system is proposed for modeling collisionless magnetic reconnection. The formulation relies on fundamental principles in Lagrangian dynamics, in which the inertia of the electron mean flow is neglected in the expression of the Lagrangian, rather then enforcing a zero electron mass in the equations of motion. This is done upon splitting the electron velocity into its mean and fluctuating parts, so that the latter naturally produce the corresponding pressure tensor. The model exhibits a new Coriolis force term, which emerges from a change of frame in the electron dynamics. Then, if the electron heat flux is neglected, the strong electron magnetization limit yields a hybrid model, in which the electron pressure tensor is frozen into the electron mean velocity.Comment: 15 pages, no figures. To Appear in Plasma Phys. Control. Fusio

    Regularized Born-Oppenheimer molecular dynamics

    Get PDF
    While the treatment of conical intersections in molecular dynamics generally requires nonadiabatic approaches, the Born-Oppenheimer adiabatic approximation is still adopted as a valid alternative in certain circumstances. In the context of Mead-Truhlar minimal coupling, this paper presents a new closure of the nuclear Born-Oppenheimer equation, thereby leading to a molecular dynamics scheme capturing geometric phase effects. Specifically, a semiclassical closure of the nuclear Ehrenfest dynamics is obtained through a convenient prescription for the nuclear Bohmian trajectories. The conical intersections are suitably regularized in the resulting nuclear particle motion and the associated Lorentz force involves a smoothened Berry curvature identifying a loop-dependent geometric phase. In turn, this geometric phase rapidly reaches the usual topological index as the loop expands away from the original singularity. This feature reproduces the phenomenology appearing in recent exact nonadiabatic studies, as shown explicitly in the Jahn-Teller problem for linear vibronic coupling. Likewise, a newly proposed regularization of the diagonal correction term is also shown to reproduce quite faithfully the energy surface presented in recent nonadiabatic studies.Comment: Third version with minor changes. To appear in Phys. Rev.
    corecore