159 research outputs found

    Numerical least-square method for resolving complex pulse height spectra

    Get PDF
    Linear least-square method resolves complex pulse height spectra, allowing for calculation of relative intensity, of statistical variance based on counting statistics of the correlation between library components, and of the goodness-of-fit chi square. Some applications are to gamma-ray, X ray, and charged-particle spectroscopy

    Analyses of the gamma-ray pulse-height spectra from the lunar surface

    Get PDF
    The method of inferring photon spectra from an analysis of the measured pulse-height spectrum is considered along with the spectrum shape and its variation energy. The case is examined where photoelastic absorption predominates, and Compton scattering and pair production are negligible. The analytic method for obtaining the elemental composition from the observed lunar surface spectrum is described, and theoretical and calculated weight fraction fluxes for average lunar composition are tabulated

    Future progress in the development of the Lixiscope

    Get PDF
    Some of the potential of the lixiscope in astrophysics as well as in space medicine are reported. The positioning of the lixiscope as a sensitive detector placed at the focal plane of a focusing or collimating X-ray telescope, and studies of the inter-coastal spacing during weightlessness are described

    Apollo 17 mission Report. Supplement 6: Calibration results for gamma ray spectrometer sodium iodide crystal

    Get PDF
    A major difficulty in medium energy gamma-ray remote sensing spectroscopy and astronomy measurements was the high rate of unwanted background resulting from the following major sources: (1) prompt secondary gamma-rays produced by cosmic-ray interactions in satellite materials; (2) direct charged-particle counts; (3) radioactivity induced in the detector materials by cosmic-ray and trapped protons; (4) radioactivity induced in detector materials by the planetary (e.g., earth or moon) albedo neutron flux; (5) radioactivity induced in the detector materials by the interaction of secondary neutrons produced throughout the spacecraft by cosmic-ray and trapped proton interactions; (6) radioactivity induced in spacecraft materials by the mechanisms outlined in 3, 4, and 5; and (7) natural radioactivity in spacecraft and detector materials. The purpose of this experiment was to obtain information on effects 3, 4, and 5, and from this information start developing calculational methods for predicting the background induced in the crystal detector in order to correct the Apollo gamma-ray spectrometer data for this interference

    Identification and control of spacecraft radiation sources of interference to X-ray and gamma-ray experiments

    Get PDF
    Apollo 15 and 16 will carry instruments for the purpose of measuring X-ray and gamma ray fluxes from the lunar surface and in cis-lunar space. The intensity levels expected are low over most of the energy range of interest, requiring that background contributions be minimized. The radiation sources on Apollo determined and their interference with these instruments evaluated. The results were used as a basis for dealing with this problem and for recommendations applicable to future manned and unmanned missions

    Method and apparatus for mapping the distribution of chemical elements in an extended medium

    Get PDF
    Contaminants in an extended medium such as the wall of a building are mapped by locating neutron excitation source on one side of the wall and a gamma ray spectrometer, including a gamma ray detector on the opposite side of the wall facing the excitation source. The source and detector are moved in unison in discrete steps over opposing wall surfaces so as to determine the chemical composition of the elements in a hemispheric region of the wall adjacent the detector with the radius of the region being substantially that of the mean free path distance of gamma rays emitted from elements interacting with neutrons on the detector side of the wall. The source and detector are reversed for relatively thick walls for mapping the distribution of elements on the other side of the wall thickness. The output of the detector is fed to a multichannel pulse height analyzer where the intensity of the various gamma ray spectral lines are indicated relative to a dominant constituent element such as silicon. Resolution of anomalies such as the presence of voids and/or determining the bulk density of the medium is achieved by substituting a gamma ray source technique is also applied to metal alloys, such as iron alloys, in either the solid or molten state

    Remote sensing X-ray spectrometer

    Get PDF
    Spectrometer measures chemical composition of lunar rocks by remote sensing from orbit and senses lunar X-rays produced by interaction of solar X-rays and elements on the lunar surface. Instrument features high sensitivity, data handling system that accumulates and prepares data for telemetry, and automatic calibration

    Nondispersive X-ray emission analysis for geochemical exploration

    Get PDF
    Nondispersive X-ray emission technique uses lightweight, and rugged X-ray fluorescence units. The X-ray pulse-height spectra is excited by radioactive isotope sources. The technique is applicable for quantitative and qualitative analyses on complex chemical systems, and satisfies the goals for a lunar geochemical exploration device

    A balloon-borne high-resolution spectrometer for observations of gamma-ray emission from solar flares

    Get PDF
    The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications

    Surface chemistry of selected lunar regions

    Get PDF
    A completely new analysis has been carried out on the data from the Apollo 15 and 16 gamma ray spectrometer experiments. The components of the continuum background have been estimated. The elements Th, K, Fe and Mg give useful results; results for Ti are significant only for a few high Ti regions. Errors are given, and the results are checked by other methods. Concentrations are reported for about sixty lunar regions; the ground track has been subdivided in various ways. The borders of the maria seem well-defined chemically, while the distribution of KREEP is broad. This wide distribution requires emplacement of KREEP before the era of mare formation. Its high concentration in western mare soils seems to require major vertical mixing
    • …
    corecore