11 research outputs found

    Magnetic properties of nanoscale crystalline maghemite obtained by a new synthetic route

    Get PDF
    AbstractIn this work we describe the synthesis and characterization of maghemite nanoparticles obtained by a new synthetic route. The material was synthesized using triethylamine as a coprecipitation agent in the presence of the organic ligand N,N′-bis(3,5-di-tert-butyl-catechol)-2,4-diaminotoluene (LCH3). Mössbauer spectrum at 4K shows typical hyperfine parameters of maghemite and Transmission Electron Microscopy images reveal that the nanoparticles have a mean diameter of 3.9nm and a narrow size distribution. AC magnetic susceptibility in zero field presents an Arrhenius behavior with unreasonable relaxation parameters due to the strong influence of dipolar interaction. In contrast when the measurements are performed in a 1kOe field, the effect of dipolar interactions becomes negligible and the obtained parameters are in good agreement with the static magnetic properties. The dynamic energy barrier obtained from the AC susceptibility results is larger than the expected from the average size observed by HRTEM results, evidencing the strong influence of the surface contribution to the anisotropy

    Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles

    Get PDF
    We report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe 3 O 4 /Zn x Co 1-x Fe 2 O 4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co 2+ by Zn 2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a NĂ©el relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present. This journal i

    Magnetic hyperthermia experiments with magnetic nanoparticles in clarified butter oil and paraffin: A thermodynamic analysis

    Get PDF
    In specific power absorption models for magnetic fluid hyperthermia (MFH) experiments, the magnetic relaxation time of nanoparticles (NPs) is known to be a fundamental descriptor of the heating mechanisms. The relaxation time is mainly determined by the interplay between the magnetic properties of NPs and the rheological properties of NPs’ environment. Although the role of magnetism in MFH has been extensively studied, the thermal properties of the NP medium and their changes during MFH experiments have been underrated so far. Herein, we show that ZnxFe3-xO4 NPs dispersed through different media with phase transition in the temperature range of experiment as clarified butter oil (CBO) and paraffin. These systems show nonlinear behavior of the heating rate within the temperature range of MFH experiments. For CBO, a fast increase at ~306 K is associated with changes in the viscosity (¿(T)) and specific heat (cp(T)) of the medium at its melting temperature. This increment in the heating rate takes place around 318 K for paraffin. The magnetic and morphological characterization of NPs together with the observed agglomeration of NPs above 306 and 318 K for CBO and paraffin, respectively, indicate that the fast increase in MFH curves could not be associated with the change in the magnetic relaxation mechanism, with Neél relaxation being dominant. In fact, successive experimental runs performed up to temperatures below and above the CBO and paraffin melting points resulted in different MFH curves due to agglomeration of NPs driven by magnetic field inhomogeneity during the experiments. Our results highlight the relevance of the thermodynamic properties of the system NP-medium for an accurate measurement of the heating efficiency for in vitro and in vivo environments, where the thermal properties are largely variable within the temperature window of MFH experiments

    Adjusting the Neel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia

    Get PDF
    In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Neel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of similar to 1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g(-1), when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes

    Mechanical properties of martensitic Cu–Zn–Al foams in the pseudoelastic regime

    No full text
    The mechanical properties of martensitic Cu–Zn–Al foams produced through molten metal infiltration of a leachable bed of silica gel were investigated. The novel porous shape memory alloy almost reversibly absorbs compression deformations up to 4%. Intergranular fracture occurs in the material along the test, similar to what is observed in polycrystalline solid samples. Despite its tendency to fracture at localized regions, the material is highly resilient, being able to stand several compression cycles. The Cu–Zn–Al foams showed excellent shape recovery after deformation (95%). This previous fact establishes it as a very promising candidate for interesting applications

    Tracking the nanoparticle exsolution reoxidation processes of Ni doped SrTi0.3Fe0.7O3 delta electrodes for intermediate temperature symmetric solid oxide fuel cells

    No full text
    The development of redox stable oxide perovskite based electrodes for cost effective symmetric solid oxide fuel cells SOFCs that can work at intermediate temperatures and compete with state of the art cathodes and anodes is becoming a concrete possibility. The Ni doped STF perovskite Sr0.93Ti0.3Fe0.63Ni0.07O3 amp; 8722; amp; 948; meets such requirements by exsolving catalytically active Ni Fe nanoparticles in reducing atmospheres that boost anode performance. This work aims at clarifying whether exsolution is a reversible process, which could extend the lifetime of SOFCs. Element specific synchrotron based near ambient pressure X ray photoelectron and absorption spectroscopies are key to understanding the exsolution reoxidation processes of the Ni Fe nanoparticles during redox cycling in the atmosphere. This study reveals that Ni exsolves easily, dragging along the more stable Fe to form nanoalloyed Ni Fe even under mild reducing conditions. A significant Sr surface segregation indicates that the initial Sr deficiency cannot fully compensate for the B site cation depletion during exsolution. Switching to an oxidizing atmosphere results in a reoxidation induced reconstruction of the electrode, in which a Fe and Sr rich oxide layer forms on the surface, leaving the Ni segregated from the perovskite. This reoxidized electrode shows a significantly improved cathode response in comparison to the pristine perovskite, indicating changes in the mechanisms that activate the oxygen reduction reactio
    corecore