21 research outputs found

    Circulating metabolites in progression to islet autoimmunity and type 1 diabetes

    Get PDF
    Aims/hypothesis: Metabolic dysregulation may precede the onset of type 1 diabetes. However, these metabolic disturbances and their specific role in disease initiation remain poorly understood. In this study, we examined whether children who progress to type 1 diabetes have a circulatory polar metabolite profile distinct from that of children who later progress to islet autoimmunity but not type 1 diabetes and a matched control group.Methods: We analysed polar metabolites from 415 longitudinal plasma samples in a prospective cohort of children in three study groups: those who progressed to type 1 diabetes; those who seroconverted to one islet autoantibody but not to type 1 diabetes; and an antibody-negative control group. Metabolites were measured using two-dimensional GC high-speed time of flight MS.Results: In early infancy, progression to type 1 diabetes was associated with downregulated amino acids, sugar derivatives and fatty acids, including catabolites of microbial origin, compared with the control group. Methionine remained persistently upregulated in those progressing to type 1 diabetes compared with the control group and those who seroconverted to one islet autoantibody. The appearance of islet autoantibodies was associated with decreased glutamic and aspartic acids.Conclusions/interpretation: Our findings suggest that children who progress to type 1 diabetes have a unique metabolic profile, which is, however, altered with the appearance of islet autoantibodies. Our findings may assist with early prediction of the disease.</p

    Infusion Therapies in the Treatment of Parkinson's Disease

    Get PDF
    Oral levodopa is the gold-standard therapy for treating Parkinson's disease (PD) but after a few years of treatment the therapeutic window narrows, and patients often experience various treatment-related complications. Patients in this advanced PD stage may benefit from alternative therapy, such as continuous intrajejunal delivery of levodopa-carbidopa intestinal gel (LCIG; or carbidopa-levodopa enteral suspension), continuous intrajejunal delivery of levodopa-carbidopa-entacapone intestinal gel, or continuous subcutaneous apomorphine infusion. Consideration and initiation of infusion therapies in advanced PD are suggested before the onset of major disability. The present review summarizes clinical evidence for infusion therapy in advanced PD management, discusses available screening tools for advanced PD, and provides considerations around optimal use of infusion therapy.</p

    The effects of image reconstruction algorithms on topographic characteristics, diagnostic performance and clinical correlation of metabolic brain networks in Parkinson\u27s disease

    No full text
    © 2018 Purpose: The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson\u27s disease related pattern (PDRP). Methods: FDG-PET brain scans of 20 Parkinson\u27s disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient\u27s clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts. Results: The region weights of the six PDRPs highly correlated (R ≥ 0.991; p \u3c 0.0001). All PDRPs’ expressions were significantly elevated in PD relative to NC and AP subjects (p \u3c 0.0001) and correlated with clinical ratings (R ≥ 0.47; p \u3c 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p \u3c 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups. Conclusion: PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable

    Impact of proanthocyanidin-rich apple intake on gut microbiota composition and polyphenol metabolomic activity in healthy mildly hypercholesterolemic subjects

    No full text
    Apples are a rich source of polyphenols and fiber. Proanthocyanidins (PAs), the largest polyphenolic class in apples, can reach the colon almost intact where they interact with the gut microbiota producing simple phenolic acids. These metabolites have the potential to modulate gut microbiota composition and activity and impact on host physiology. A randomized, controlled, crossover, dietary intervention study was performed to determine the broad effects of whole apple intake on fecal gut microbiota composition and activity. Forty heathy mildly hypercholesterolemic volunteers (23 women, 17 men), with a mean BMI (± SD) 25.3 ± 3.7 kg/m2 and age 51 ± 11 years, consumed 2 apples/day (Renetta Canada, rich in PAs), or a sugar matched control apple beverage, for 8 weeks separated by a 4-week washout period in a random order. Fecal and 24-h urine samples were collected before and after each treatment. The broad effects of apple intake on fecal gut microbiota composition were explored by the high throughput sequencing (HTS) of 16S rRNA gene lllumina MiSeq sequencing (V3-V4 region). Sequencing data analysis was performed using the Quantitative Insight Into Microbial Ecology (QIIME) open-source pipeline version 1.9.1. Specific bacterial groups were also enumerated using the quantitative Fluorescence In Situ Hybridization (FISH). Furthermore, the potential formation of microbial polyphenol metabolites, after apple intake, was explored in urine using Liquid Chromatography (LC) High-Resolution Mass Spectrometry (HRMS) metabolomics. Preliminary analysis showed no changes in gut microbiota abundances measured by Illumina MiSeq, after correction for multiple testing. Apple intake significantly decreased Enterobacteriaceae population (P=0.04) compared to the control beverage, as determined with FISH. Twenty-four polyphenol microbial metabolites were identified in higher concentrations in the apple group (P<0.05) compared to the control, including valerolactones, valeric and phenolic acids. In conclusion, preliminary data suggest that the daily intake of 2 Renetta Canada apples significantly decreased Enterobacteriaceae population, a family known for its pathogenic members, in healthy mildly hypercholesterolemic subjects. Moreover, several polyphenol microbial metabolites were identified, suggesting that microbial activity is crucial and a prerequisite for the absorption of apple polyphenols, producing active metabolites with potential health benefits

    Human gut microbes impact host serum metabolome and insulin sensitivity

    No full text
    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders
    corecore