213 research outputs found

    Social amoebae mating types do not invest unequally in sexual offspring

    Get PDF
    Unequal investment by different sexes in their progeny is common and includes differential investment in the zygote and differential care of the young. The social amoeba Dictyostelium discoideum has a sexual stage in which isogamous cells of any two of the three mating types fuse to form a zygote which then attracts hundreds of other cells to the macrocyst. The latter cells are cannibalized and so make no genetic contribution to reproduction. Previous literature suggests that this sacrifice may be induced in cells of one mating type by cells of another, resulting in a higher than expected production of macrocysts when the inducing type is rare and giving a reproductive advantage to this social cheat. We tested this hypothesis in eight trios of field-collected clones of each of the three D. discoideum mating types by measuring macrocyst production at different pairwise frequencies. We found evidence that supported differential contribution in only two of the 24 clone pairs, so this pattern is rare and clone-specific. In general, we did not reject the hypothesis that the mating types contribute cells relative to their proportion in the population. We also found a significant quadratic relationship between partner frequency and macrocyst production, suggesting that when one clone is rare, macrocyst production is limited by partner availability. We were also unable to replicate previous findings that macrocyst production could be induced in the absence of a compatible mating partner. Overall, mating type-specific differential investment during sex is unlikely in microbial eukaryotes like D. discoideum

    Evolutionary prisoner's dilemma games with optional participation

    Full text link
    Competition among cooperators, defectors, and loners is studied in an evolutionary prisoner's dilemma game with optional participation. Loners are risk averse i.e. unwilling to participate and rather rely on small but fixed earnings. This results in a rock-scissors-paper type cyclic dominance of the three strategies. The players are located either on square lattices or random regular graphs with the same connectivity. Occasionally, every player reassesses its strategy by sampling the payoffs in its neighborhood. The loner strategy efficiently prevents successful spreading of selfish, defective behavior and avoids deadlocks in states of mutual defection. On square lattices, Monte Carlo simulations reveal self-organizing patterns driven by the cyclic dominance, whereas on random regular graphs different types of oscillatory behavior are observed: the temptation to defect determines whether damped, periodic or increasing oscillations occur. These results are compared to predictions by pair approximation. Although pair approximation is incapable of distinguishing the two scenarios because of the equal connectivity, the average frequencies as well as the oscillations on random regular graphs are well reproduced.Comment: 6 pages, 7 figure

    Motion of influential players can support cooperation in Prisoner's Dilemma

    Full text link
    We study a spatial Prisoner's dilemma game with two types (A and B) of players located on a square lattice. Players following either cooperator or defector strategies play Prisoner's Dilemma games with their 24 nearest neighbors. The players are allowed to adopt one of their neighbor's strategy with a probability dependent on the payoff difference and type of the given neighbor. Players A and B have different efficiency in the transfer of their own strategy therefore the strategy adoption probability is reduced by a multiplicative factor (w < 1) from the players of type B. We report that the motion of the influential payers (type A) can improve remarkably the maintenance of cooperation even for their low densities.Comment: 7 pages, 7 figure

    Cooperation and its evolution in growing systems with cultural reproduction

    Full text link
    We explore the evolution of cooperation in the framework of the evolutionary game theory using the prisoner's dilemma as metaphor of the problem. We present a minimal model taking into account the growing process of the systems and individuals with imitation capacity. We consider the topological structure and the evolution of strategies decoupled instead of a coevolutionary dynamic. We show conditions to build up a cooperative system with real topological structures for any natural selection intensity. When the system starts to grow, cooperation is unstable but becomes stable as soon as the system reaches a small core of cooperators whose size increase when the intensity of natural selection decreases. Thus, we reduce the emergence of cooperative systems with cultural reproduction to justify a small initial cooperative structure that we call cooperative seed. Otherwise, given that the system grows principally as cooperator whose cooperators inhabit the most linked parts of the system, the benefit-cost ratio required for cooperation evolve is drastically reduced compared to the found in static networks. In this way, we show that in systems whose individuals have imitation capacity the growing process is essential for the evolution of cooperation.Comment: 16 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:1111.247

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful &quot;just so stories&quot; about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    Costs of breeding and their effects on the direction of sexual selection

    No full text
    A recent life-history model has challenged the importance of the operational sex ratio and the potential reproductive rates of males and females as the factors most important for the control of sexual selection, arguing that the cost of breeding, interpreted as the probability of dying as a consequence of the current breeding attempt, is the single most important factor that best predicts a mating system. In one species of bushcricket, the mating system can be reversed by resource manipulation. Here, we examine the costs of breeding in this system. Consistent with the model, increased costs of breeding can explain female competition and increased male choosiness under resource limitation. However, this is due to differences in the time required for a breeding attempt, rather than differences in breeding mortality which did not differ between the sexes. In general, males lived longer than females and we discuss the possible reasons behind this pattern of sex-biased non-breeding mortality

    Costly but worthless gifts facilitate courtship

    No full text
    What are the characteristics of a good courtship gift? We address this question by modelling courtship as a sequential game. This is structured as follows: the male offers a gift to a female; after observing the gift, the female decides whether or not to accept it; she then chooses whether or not to mate with the male. In one version of the game, based on human courtship, the female is uncertain about whether the male intends to stay or desert after mating. In a second version, there is no paternal care but the female is uncertain about the male's quality. The two versions of the game are shown to be mathematically equivalent. We find robust equilibrium solutions in which mating is predominantly facilitated by an ‘extravagant’ gift which is costly to the male but intrinsically worthless to the female. By being costly to the male, the gift acts as a credible signal of his intentions or quality. At the same time, its lack of intrinsic value to the female serves to deter a ‘gold-digger’, who has no intention of mating with the male, from accepting the gift. In this way, an economically inefficient gift enables mutually suitable partners to be matched
    corecore