7 research outputs found

    Changes of RAS Pathway Phosphorylation in Lymphoblastoid Cell Lines from Noonan Syndrome Patients Carrying Hypomorphic Variants in Two NS Genes

    No full text
    Noonan syndrome (NS) is an autosomal dominant multisystem disorder, characterized by variable expressivity and locus heterogeneity, being caused by mutations in one of a subset of RAS pathway genes. Nevertheless, for 20–30% of patients it is not possible to provide molecular diagnosis, suggesting that further unknown genes or mechanisms are involved in NS pathogenesis. Recently, we proposed a digenic inheritance of subclinical variants as an alternative NS pathogenic model in two NS patients negative for molecular diagnosis. They showed hypomorphic variants of RAS pathway genes co-inherited from both their healthy parents that we hypothesized to generate an additive effect. Here, we report on the phosphoproteome and proteome analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) performed on the immortalized peripheral blood mononuclear cells (PBMCs) from the two above trios. Our results indicate that the two unrelated patients show overlapped profiles in both protein abundances and their phosphorylation levels not reached by their parents. IPA software predicted RAS-related pathways as significantly activated in the two patients. Interestingly, they remained unchanged or only slightly activated in both patients’ parents. These findings suggest that the presence of one subclinical variant can activate the RAS pathway below the pathological threshold, which can instead be exceeded by the additive effect due to the co-presence of two subclinical variants causing NS, supporting our digenic inheritance hypothesis

    Changes of RAS Pathway Phosphorylation in Lymphoblastoid Cell Lines from Noonan Syndrome Patients Carrying Hypomorphic Variants in Two NS Genes

    No full text
    Noonan syndrome (NS) is an autosomal dominant multisystem disorder, characterized by variable expressivity and locus heterogeneity, being caused by mutations in one of a subset of RAS pathway genes. Nevertheless, for 20–30% of patients it is not possible to provide molecular diagnosis, suggesting that further unknown genes or mechanisms are involved in NS pathogenesis. Recently, we proposed a digenic inheritance of subclinical variants as an alternative NS pathogenic model in two NS patients negative for molecular diagnosis. They showed hypomorphic variants of RAS pathway genes co-inherited from both their healthy parents that we hypothesized to generate an additive effect. Here, we report on the phosphoproteome and proteome analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) performed on the immortalized peripheral blood mononuclear cells (PBMCs) from the two above trios. Our results indicate that the two unrelated patients show overlapped profiles in both protein abundances and their phosphorylation levels not reached by their parents. IPA software predicted RAS-related pathways as significantly activated in the two patients. Interestingly, they remained unchanged or only slightly activated in both patients’ parents. These findings suggest that the presence of one subclinical variant can activate the RAS pathway below the pathological threshold, which can instead be exceeded by the additive effect due to the co-presence of two subclinical variants causing NS, supporting our digenic inheritance hypothesis

    Characterization of 22q12 Microdeletions Causing Position Effect in Rare NF2 Patients with Complex Phenotypes

    No full text
    Neurofibromatosis type 2 is an autosomal dominant tumor-prone disorder mainly caused by NF2 point mutations or intragenic deletions. Few individuals with a complex phenotype and 22q12 microdeletions have been described. The 22q12 microdeletions’ pathogenic effects at the genetic and epigenetic levels are currently unknown. We here report on 22q12 microdeletions’ characterization in three NF2 patients with different phenotype complexities. A possible effect of the position was investigated by in silico analysis of 22q12 topologically associated domains (TADs) and regulatory elements, and by expression analysis of 12 genes flanking patients’ deletions. A 147 Kb microdeletion was identified in the patient with the mildest phenotype, while two large deletions of 561 Kb and 1.8 Mb were found in the other two patients, showing a more severe symptomatology. The last two patients displayed intellectual disability, possibly related to AP1B1 gene deletion. The microdeletions change from one to five TADs, and the 22q12 chromatin regulatory landscape, according to the altered expression levels of four deletion-flanking genes, including PIK3IP1, are likely associated with an early ischemic event occurring in the patient with the largest deletion. Our results suggest that the identification of the deletion extent can provide prognostic markers, predictive of NF2 phenotypes, and potential therapeutic targets, thus overall improving patient management

    A Translational Approach to Spinal Neurofibromatosis: Clinical and Molecular Insights from a Wide Italian Cohort

    No full text
    Spinal neurofibromatosis (SNF), a phenotypic subclass of neurofibromatosis 1 (NF1), is characterized by bilateral neurofibromas involving all spinal roots. In order to deepen the understanding of SNF's clinical and genetic features, we identified 81 patients with SNF, 55 from unrelated families, and 26 belonging to 19 families with at least 1 member affected by SNF, and 106 NF1 patients aged >30 years without spinal tumors. A comprehensive NF1 mutation screening was performed using NGS panels, including NF1 and several RAS pathway genes. The main features of the SNF subjects were a higher number of internal neurofibromas (p < 0.001), nerve root swelling (p < 0.001), and subcutaneous neurofibromas (p = 0.03), while hyperpigmentation signs were significantly less frequent compared with the classical NF1-affected cohorts (p = 0.012). Fifteen patients underwent neurosurgical intervention. The histological findings revealed neurofibromas in 13 patients and ganglioneuromas in 2 patients. Phenotypic variability within SNF families was observed. The proportion of missense mutations was higher in the SNF cases than in the classical NF1 group (21.40% vs. 7.5%, p = 0.007), conferring an odds ratio (OR) of 3.34 (CI = 1.33-10.78). Two unrelated familial SNF cases harbored in trans double NF1 mutations that seemed to have a subclinical worsening effect on the clinical phenotype. Our study, with the largest series of SNF patients reported to date, better defines the clinical and genetic features of SNF, which could improve the management and genetic counseling of NF1

    A Translational Approach to Spinal Neurofibromatosis: Clinical and Molecular Insights from a Wide Italian Cohort

    No full text
    Spinal neurofibromatosis (SNF), a phenotypic subclass of neurofibromatosis 1 (NF1), is characterized by bilateral neurofibromas involving all spinal roots. In order to deepen the understanding of SNF’s clinical and genetic features, we identified 81 patients with SNF, 55 from unrelated families, and 26 belonging to 19 families with at least 1 member affected by SNF, and 106 NF1 patients aged >30 years without spinal tumors. A comprehensive NF1 mutation screening was performed using NGS panels, including NF1 and several RAS pathway genes. The main features of the SNF subjects were a higher number of internal neurofibromas (p < 0.001), nerve root swelling (p < 0.001), and subcutaneous neurofibromas (p = 0.03), while hyperpigmentation signs were significantly less frequent compared with the classical NF1-affected cohorts (p = 0.012). Fifteen patients underwent neurosurgical intervention. The histological findings revealed neurofibromas in 13 patients and ganglioneuromas in 2 patients. Phenotypic variability within SNF families was observed. The proportion of missense mutations was higher in the SNF cases than in the classical NF1 group (21.40% vs. 7.5%, p = 0.007), conferring an odds ratio (OR) of 3.34 (CI = 1.33–10.78). Two unrelated familial SNF cases harbored in trans double NF1 mutations that seemed to have a subclinical worsening effect on the clinical phenotype. Our study, with the largest series of SNF patients reported to date, better defines the clinical and genetic features of SNF, which could improve the management and genetic counseling of NF1
    corecore