47 research outputs found

    High Thermoelectric Figure of Merit by Resonant Dopant in Half-Heusler Alloys

    Full text link
    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in enhancing the ZT of n-type half-Heusler alloys based on Hf0.6Zr0.4NiSn0.995Sb0.005. The V doping was found to increase the Seebeck coefficient in the temperature range 300-1000 K, consistent with a resonant doping scheme. In contrast, Nb and Ta act as normal n-type dopants, as evident by the systematic decrease in electrical resistivity and Seebeck coefficient. The combination of enhanced Seebeck coefficient due to the presence of V resonant states and the reduced thermal conductivity has led to a state-of-the-art ZT of 1.3 near 850 K in n-type (Hf0.6Zr0.4)0.99V0.01NiSn0.995Sb0.005 alloys.Comment: Submitted to AIP Advance

    Convective flow chemical vapor deposition growth of nanostructures

    Get PDF
    The invention is directed to CVD methods and systems that can be utilized to form nanostructures. Exceptionally high product yields can be attained. In addition, the products can be formed with predetermined particle sizes and morphologies and within a very narrow particle size distribution. The systems of the invention include a CVD reactor designed to support the establishment of a convective flow field within the reactor at the expected carrier gas flow rates. In particular, the convective flow field within the reactor can include one or more flow vortices. The disclosed invention can be particularly beneficial for forming improved thermoelectric materials with high values for the figure of merit (ZT)

    Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds

    Full text link
    Half-Heusler (HH) alloys have attracted considerable interest as promising thermoelectric (TE) materials in the temperature range around 700 K and above, which is close to the temperature range of most industrial waste heat sources. The past few years have seen nanostructuing play an important role in significantly enhancing the TE performance of several HH alloys. In this article, we briefly review the recent progress and advances in these HH nanocomposites. We begin by presenting the structure of HH alloys and the different strategies that have been utilized for improving the TE properties of HH alloys. Next, we review the details of HH nanocomposites as obtained by different techniques. Finally, the review closes by highlighting several promising strategies for further research directions in these very promising TE materials.Comment: 34 pages, 22 figure

    Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3

    Get PDF
    Over the past two decades several nano-structuring methods have helped improve the figure of merit (ZT) in the state-of-the art bulk thermoelectric materials. While these methods could enhance the thermoelectric performance of p-type Bi2Te3, it was frustrating to researchers that they proved ineffective for n-type Bi2Te3 due to the inevitable deterioration of its thermoelectric properties in the basal plane. Here, we describe a novel chemical-exfoliation spark-plasma-sintering (CE-SPS) nano-structuring process, which transforms the microstructure of n-type Bi2Te3 in an extraordinary manner without compromising its basal plane properties. The CE-SPS processing leads to preferential scattering of electrons at charged grain boundaries, and thereby increases the electrical conductivity despite the presence of numerous grain boundaries, and mitigates the bipolar effect via band occupancy optimization leading to an upshift (by ~ 100 K) and stabilization of the ZT peak over a broad temperature range of ~ 150 K

    Thermal conductivity: theory, properties, and applications

    No full text
    It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generatio
    corecore