51 research outputs found

    Cbfa2 is Required for the Formation of Intra-Aortic Hematopoietic Clusters

    Get PDF
    Cbfa2 (AML1) encodes the DNA-binding subunit of a transcription factor in the small family of core-binding factors (CBFs). Cbfa2 is required for the differentiation of all definitive hematopoietic cells, but not for primitive erythropoiesis. Here we show that Cbfa2 is expressed in definitive hematopoietic progenitor cells, and in endothelial cells in sites from which these hematopoietic cells are thought to emerge. Endothelial cells expressing Cbfa2 are in the yolk sac, the vitelline and umbilical arteries, and in the ventral aspect of the dorsal aorta in the aorta/genital ridge/mesonephros (AGM) region. Endothelial cells lining the dorsal aspect of the aorta, and elsewhere in the embryo, do not express Cbfa2. Cbfa2 appears to be required for maintenance of Cbfa2 expression in the endothelium, and for the formation of intra-aortic hematopoietic clusters from the endothelium

    Runx1 Expression Marks Long-Term Repopulating Hematopoietic Stem Cells in the Midgestation Mouse Embryo

    Get PDF
    AbstractHematopoietic stem cells (HSCs) are first found in the aorta-gonad-mesonephros region and vitelline and umbilical arteries of the midgestation mouse embryo. Runx1 (AML1), the DNA binding subunit of a core binding factor, is required for the emergence and/or subsequent function of HSCs. We show that all HSCs in the embryo express Runx1. Furthermore, HSCs in Runx1+/− embryos are heterogeneous and include CD45+ cells, endothelial cells, and mesenchymal cells. Comparison with wild-type embryos showed that the distribution of HSCs among these various cell populations is sensitive to Runx1 dosage. These data provide the first morphological description of embryonic HSCs and contribute new insight into their cellular origin

    Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation

    Get PDF
    Summary Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification

    Mutation mapping and identification by whole-genome sequencing

    Get PDF
    Genetic mapping of mutations in model systems has facilitated the identification of genes contributing to fundamental biological processes including human diseases. However, this approach has historically required the prior characterization of informative markers. Here we report a fast and cost-effective method for genetic mapping using next-generation sequencing that combines single nucleotide polymorphism discovery, mutation localization, and potential identification of causal sequence variants. In contrast to prior approaches, we have developed a hidden Markov model to narrowly define the mutation area by inferring recombination breakpoints of chromosomes in the mutant pool. In addition, we created an interactive online software resource to facilitate automated analysis of sequencing data and demonstrate its utility in the zebrafish and mouse models. Our novel methodology and online tools will make next-generation sequencing an easily applicable resource for mutation mapping in all model systems.Harvard Stem Cell Institute (Junior Faculty Grant)National Institutes of Health (U.S.) (Grant 1R01DK090311)National Institutes of Health (U.S.) (Grant 5R01MH084676

    Teleost Growth Factor Independence (Gfi) Genes Differentially Regulate Successive Waves of Hematopoiesis

    Get PDF
    Growth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1b, regulates HSC, megakaryocyte and erythroid development. In zebrafish, gfi1aa is essential for primitive hematopoiesis; however, little is known about the role of gfi1aa in definitive hematopoiesis or about additional gfi factors in zebrafish. Here, we report the isolation and characterization of an additional hematopoietic gfi factor, gfi1b. We show that gfi1aa and gfi1b are expressed in the primitive and definitive sites of hematopoiesis in zebrafish. Our functional analyses demonstrate that gfi1aa and gfi1b have distinct roles in regulating primitive and definitive hematopoietic progenitors, respectively. Loss of gfi1aa silences markers of early primitive progenitors, scl and gata1. Conversely, loss of gfi1b silences runx-1, c-myb, ikaros and cd41, indicating that gfi1b is required for definitive hematopoiesis. We determine the epistatic relationships between the gfi factors and key hematopoietic transcription factors, demonstrating that gfi1aa and gfi1b join lmo2, scl, runx-1 and c-myb as critical regulators of teleost HSPC. Our studies establish a comparative paradigm for the regulation of hematopoietic lineages by gfi transcription factors.Stem Cell and Regenerative Biolog

    Reconstruction of complex single-cell trajectories using CellRouter

    Get PDF
    A better understanding of the cell-fate transitions that occur in complex cellular ecosystems in normal development and disease could inform cell engineering efforts and lead to improved therapies. However, a major challenge is to simultaneously identify new cell states, and their transitions, to elucidate the gene expression dynamics governing cell-type diversification. Here, we present CellRouter, a multifaceted single-cell analysis platform that identifies complex cell-state transition trajectories by using flow networks to explore the subpopulation structure of multi-dimensional, single-cell omics data. We demonstrate its versatility by applying CellRouter to single-cell RNA sequencing data sets to reconstruct cell-state transition trajectories during hematopoietic stem and progenitor cell (HSPC) differentiation to the erythroid, myeloid and lymphoid lineages, as well as during re-specification of cell identity by cellular reprogramming of monocytes and B-cells to HSPCs. CellRouter opens previously undescribed paths for in-depth characterization of complex cellular ecosystems and establishment of enhanced cell engineering approaches

    Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production

    Get PDF
    Identifying signaling pathways that regulate hematopoietic stem and progenitor cell (HSPC) formation in the embryo will guide efforts to produce and expand HSPCs ex vivo. Here we show that sterile tonic inflammatory signaling regulates embryonic HSPC formation. Expression profiling of progenitors with lymphoid potential and hematopoietic stem cells (HSCs) from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos revealed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ) or IFN-α signaling and zebrafish morphants lacking IFN-γ and IFN-ϕ activity had significantly fewer AGM HSPCs. Conversely, knockdown of IFN regulatory factor 2 (IRF2), a negative regulator of IFN signaling, increased expression of IFN target genes and HSPC production in zebrafish. Chromatin immunoprecipitation (ChIP) combined with sequencing (ChIP-seq) and expression analyses demonstrated that IRF2-occupied genes identified in human fetal liver CD34(+) HSPCs are actively transcribed in human and mouse HSPCs. Furthermore, we demonstrate that the primitive myeloid population contributes to the local inflammatory response to impact the scale of HSPC production in the AGM region. Thus, sterile inflammatory signaling is an evolutionarily conserved pathway regulating the production of HSPCs during embryonic development

    Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production

    Get PDF
    SUMMARY Vitamin D insufficiency is a worldwide epidemic affecting billions of individuals, including pregnant women and children. Despite its high incidence, the impact of active vitamin D3 (1,25(OH)D3) on embryonic development beyond osteo-regulation remains largely undefined. Here, we demonstrate that 1,25(OH)D3 availability modulates zebrafish hematopoietic stem and progenitor cell (HSPC) production. Loss of Cyp27b1-mediated biosynthesis or vitamin D receptor (VDR) function by gene knockdown resulted in significantly reduced runx1 expression and Flk1+cMyb+ HSPC numbers. Selective modulation in vivo and in vitro in zebrafish indicated that vitamin D3 acts directly on HSPCs, independent of calcium regulation, to increase proliferation. Notably, ex vivo treatment of human HSPCs with 1,25(OH)D3 also enhanced hematopoietic colony numbers, illustrating conservation across species. Finally, gene expression and epistasis analysis indicated that CXCL8 (IL-8) was a functional target of vitamin D3-mediated HSPC regulation. Together, these findings highlight the relevance of developmental 1,25(OH)D3 availability for definitive hematopoiesis and suggest potential therapeutic utility in HSPC expansion

    Hematopoietic Stem Cell Development Is Dependent on Blood Flow

    Get PDF
    SummaryDuring vertebrate embryogenesis, hematopoietic stem cells (HSCs) arise in the aorta-gonads-mesonephros (AGM) region. We report here that blood flow is a conserved regulator of HSC formation. In zebrafish, chemical blood flow modulators regulated HSC development, and silent heart (sih) embryos, lacking a heartbeat and blood circulation, exhibited severely reduced HSCs. Flow-modifying compounds primarily affected HSC induction after the onset of heartbeat; however, nitric oxide (NO) donors regulated HSC number even when treatment occurred before the initiation of circulation, and rescued HSCs in sih mutants. Morpholino knockdown of nos1 (nnos/enos) blocked HSC development, and its requirement was shown to be cell autonomous. In the mouse, Nos3 (eNos) was expressed in HSCs in the AGM. Intrauterine Nos inhibition or embryonic Nos3 deficiency resulted in a reduction of hematopoietic clusters and transplantable murine HSCs. This work links blood flow to AGM hematopoiesis and identifies NO as a conserved downstream regulator of HSC development

    Single-Cell Transcriptional Analysis of Normal, Aberrant, and Malignant Hematopoiesis in Zebrafish

    Get PDF
    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia
    • …
    corecore