17 research outputs found

    Improving trading saystems using the RSI financial indicator and neural networks.

    Get PDF
    Proceedings of: 11th International Workshop on Knowledge Management and Acquisition for Smart Systems and Services (PKAW 2010), 20 August-3 September 2010, Daegu (Korea)Trading and Stock Behavioral Analysis Systems require efficient Artificial Intelligence techniques for analyzing Large Financial Datasets (LFD) and have become in the current economic landscape a significant challenge for multi-disciplinary research. Particularly, Trading-oriented Decision Support Systems based on the Chartist or Technical Analysis Relative Strength Indicator (RSI) have been published and used worldwide. However, its combination with Neural Networks as a branch of computational intelligence which can outperform previous results remain a relevant approach which has not deserved enough attention. In this paper, we present the Chartist Analysis Platform for Trading (CAST, in short) platform, a proof-of-concept architecture and implementation of a Trading Decision Support System based on the RSI and Feed-Forward Neural Networks (FFNN). CAST provides a set of relatively more accurate financial decisions yielded by the combination of Artificial Intelligence techniques to the RSI calculation and a more precise and improved upshot obtained from feed-forward algorithms application to stock value datasets.This work is supported by the Spanish Ministry of Industry, Tourism, and Commerce under the EUREKA project SITIO (TSI-020400-2009-148), SONAR2 (TSI-020100-2008-665 and GO2 (TSI-020400-2009-127). Furthermore, this work is supported by the General Council of Superior Technological Education of Mexico (DGEST). Additionally, this work is sponsored by the National Council of Science and Technology (CONACYT) and the Public Education Secretary (SEP) through PROMEP.Publicad

    A BP Neural Network Predictor Model for Stock Price

    No full text

    Cyclic forecasting with recurrent neural network

    No full text

    The Impact on Housing Values of Restrictions on Rights of Ownership: The Case of an Occupant's Age

    No full text
    With the exception of anecdotal information, little is known about the specific effects on the value of a house because its ownership is restricted to people older than a certain age. This article provides an empirically-derived assessment of the impact on the selling price of single-family residences when their ownership is age restricted. To determine the effect on the sales price of age-restricted houses, a standard hedonic pricing model is applied to a sample of 371 sales transactions drawn from a suburban area of a large city. The results indicate that an age restriction placed on houses decreases their value by 6%. This finding may be of interest to local land-use regulators, developers who are considering developing age-restricted houses and appraisers who wish to make value adjustments to these homes. Copyright American Real Estate and Urban Economics Association.

    Credit scoring and decision making in Egyptian public sector banks

    No full text
    Purpose – The main aims of this paper are: first, to investigate how decisions are currently made within the Egyptian public sector environment; and, second, to determine whether the decision making can be significantly improved through the use of credit scoring models. A subsidiary aim is to analyze the impact of different proportions of sub-samples of accepted credit applicants on both efficient decision making and the optimal choice of credit scoring techniques. Design/methodology/approach – Following an investigative phase to identify relevant variables in the sector, the research proceeds to an evaluative phase, in which an analysis is undertaken of real data sets (comprising 1,262 applicants), provided by the commercial public sector banks in Egypt. Two types of neural nets are used, and correspondingly two types of conventional techniques are applied. The use of two evaluative measures/criteria: average correct classification (ACC) rate and estimated misclassification cost (EMC) under different misclassification cost (MC) ratios are investigated. Findings – The currently used approach is based on personal judgement. Statistical scoring techniques are shown to provide more efficient classification results than the currently used judgemental techniques. Furthermore, neural net models give better ACC rates, but the optimal choice of techniques depends on the MC ratio. The probabilistic neural net (PNN) is preferred for a lower cost ratio, whilst the multiple discriminant analysis (MDA) is the preferred choice for a higher ratio. Thus, there is a role for MDA as well as neural nets. There is evidence of statistically significant differences between advanced scoring models and conventional models. Research limitations/implications – Future research could investigate the use of further evaluative measures, such as the area under the ROC curve and GINI coefficient techniques and more statistical techniques, such as genetic and fuzzy programming. The plan is to enlarge the data set. Practical implications – There is a huge financial benefit from applying these scoring models to Egyptian public sector banks, for at present only judgemental techniques are being applied in credit evaluation processes. Hence, these techniques can be introduced to support the bank credit decision makers. Originality/value – Thie paper reveals a set of key variables culturally relevant to the Egyptian environment, and provides an evaluation of personal loans in the Egyptian public sector banking environment, in which (to the best of the author's knowledge) no other authors have studied the use of sophisticated statistical credit scoring techniques
    corecore