2,283 research outputs found

    Tracing baryons in the warm-hot intergalactic medium with broad Ly alpha absorption

    Full text link
    We discuss physical properties and baryonic content of broad Ly alpha absorbers (BLAs) at low redshift. These absorption systems, recently discovered in high-resolution, high-signal to noise quasar absorption line spectra, possibly trace the warm-hot intergalactic medium (WHIM) in the temperature range between 10^5 and 10^6 K. To extend previous BLA measurements we have analyzed STIS data of the two quasars H 1821+643 and PG 0953+415 and have identified 13 BLA candidates along a total (unblocked) redshift path of dz=0.440. Combining our measurements with previous results for the lines of sight toward PG 1259+593 and PG 1116+215, the resulting new BLA sample consists of 20 reliably detected systems as well as 29 additional tentative cases, implying a BLA number density of dN/dz=22-53. We estimate that the contribution of BLAs to the baryon density at z=0 is Omega_b(BLA)>0.0027 h_70^-1 for absorbers with log (N/b)>11.3. This number indicates that WHIM broad Ly alpha absorbers contain a substantial fraction of the baryons in the local Universe. (Abridged abstract)Comment: 17 pages, 7 figures; Accepted for publication in A&

    Numerical methods and computers used in elastohydrodynamic lubrication

    Get PDF
    Some of the methods of obtaining approximate numerical solutions to boundary value problems that arise in elastohydrodynamic lubrication are reviewed. The highlights of four general approaches (direct, inverse, quasi-inverse, and Newton-Raphson) are sketched. Advantages and disadvantages of these approaches are presented along with a flow chart showing some of the details of each. The basic question of numerical stability of the elastohydrodynamic lubrication solutions, especially in the pressure spike region, is considered. Computers used to solve this important class of lubrication problems are briefly described, with emphasis on supercomputers

    Surface roughness effects in elastohydrodynamic contacts

    Get PDF
    Surface roughness effects in full-film EHL contacts were studied. A flow factor modification to the Reynolds equation was applied to piezoviscous-elastic line contacts. Results for ensemble-averaged film shape, pressure distribution, and other mechanical quantities were obtained. Asperities elongated in the flow direction by a factor exceeding two decreased both film shape and pressure extrema at constant load; isotropic or transverse asperities increased these extrema. The largest effects are displayed by traction, which increased by over 5% for isotropic or transverse asperities and by slightly less for longitudinal roughness

    Revealing the Warm-Hot Intergalactic Medium with OVI Absorption

    Full text link
    Hydrodynamic simulations of growth of cosmic structure suggest that 30-50% of the total baryons at z=0 may be in a warm-hot intergalactic medium (WHIM) with temperatures ~10^5-10^7K. The O VI \lambda \lambda 1032, 1038 absorption line doublet in the FUV portion of QSO spectra provides an important probe of this gas. Utilizing recent hydrodynamic simulations, it is found that there should be ~5 O VI absorption lines per unit redshift with equivalent widths >= 35 mA, decreasing rapidly to ~0.5 per unit redshift at >= 350 mA. About 10% of the total baryonic matter or 20-30% of the WHIM is expected to be in the O VI absorption line systems with equivalent width >= 20 mA; the remaining WHIM gas may be too hot or have too low metallicity to be detected in O VI. We find that the simulation results agree well with observations with regard to the line abundance and total mass contained in these systems. Some of the O VI systems are collisionally ionized and some are photoionized, but most of the mass is in the collisionally ionized systems. We show that the gas that produces the O VI absorption lines does not reside in virialized regions such as galaxies, groups, or clusters of galaxies, but rather has an overdensity of 10-40 times the average density. These regions form a somewhat connected network of filaments. The typical metallicity of these regions is 0.1-0.3Zsun.Comment: accepted to ApJ Letters; full color Figure 1 may be obtained at http://astro.princeton.edu/~cen/PROJECTS/p2/p2.html (at the bottom of the page

    A Comparison of Absorption and Emission Line Abundances in the Nearby Damped Lyman-alpha Galaxy SBS 1543+593

    Full text link
    We have used the Space Telescope Imaging Spectrograph (STIS) aboard HST to measure a sulfur abundance of [S/H] = -0.41 +/-0.06 in the interstellar medium (ISM) of the nearby damped Lyman-alpha (DLA) absorbing galaxy SBS 1543+593. A direct comparison between this QSO absorption line abundance on the one hand, and abundances measured from HII region emission line diagnostics on the other, yield the same result: the abundance of sulfur in the neutral ISM is in good agreement with that of oxygen measured in an HII region 3 kpc away. Our result contrasts with those of other recent studies which have claimed order-of-magnitude differences between HI (absorption) and HII (emission) region abundances. We also derive a nickel abundance of [Ni/H] < -0.81, some three times less than that of sulfur, and suggest that the depletion is due to dust, although we cannot rule out an over-abundance of alpha-elements as the cause of the lower metallicity. It is possible that our measure of [S/H] is over-estimated if some SII arises in ionized gas; adopting a plausible star formation rate for the galaxy along the line of sight, and a measurement of the CII* 1335.7 absorption line detected from SBS 1543+593, we determine that the metallicity is unlikely to be smaller than we derive by more than 0.25 dex. We estimate that the cooling rate of the cool neutral medium is log [l_c (ergs s^{-1} H atom^{-1})] = -27.0, the same value as that seen in the high redshift DLA population.Comment: 31 pages; accepted for publication in the Ap

    O VI and Multicomponent H I Absorption Associated with a Galaxy Group in the Direction of PG0953+415: Physical Conditions and Baryonic Content

    Get PDF
    We report the discovery of an O VI absorption system at z(abs) = 0.14232 in a high resolution FUV spectrum of PG0953+415 obtained with the Space Telescope Imaging Spectrograph (STIS). Both lines of the O VI 1032, 1038 doublet and multicomponent H I Lya absorption are detected, but the N V doublet and the strong lines of C II and Si III are not apparent. We examine the ionization mechanism of the O VI absorber and find that while theoretical considerations favor collisional ionization, it is difficult to observationally rule out photoionization. If the absorber is collisionally ionized, it may not be in equilibrium due to the rapid cooling of gas in the appropriate temperature range. Non-equilibrium collisionally ionized models are shown to be consistent with the observations. A WIYN survey of galaxy redshifts near the sight line has revealed a galaxy at a projected distance of 395 kpc separated by ~130 km/s from this absorber, and three additional galaxies are found within 130 km/s of this redshift with projected separations ranging from 1.0 Mpc to 3.0 Mpc. Combining the STIS observations of PG0953+415 with previous high S/N GHRS observations of H1821+643, we derive a large number of O VI absorbers per unit redshift, dN/dz ~20. We use this sample to obtain a first estimate of the cosmological mass density of the O VI systems at z ~ 0. If further observations confirm the large dN/dz derived for the O VI systems, then these absorbers trace a significant reservoir of baryonic matter at low redshift.Comment: Accepted for publication in Ap.J., vol. 542 (Oct. 10, 2000
    corecore