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SUMMARY

Some of the methods of obtaining approximate numerical solutions to

boundary-value problems that arise in elastohydrodynamic lubrication are

reviewed. The highlights of four general approaches (direct, inverse, gi'asi-
inverse, and Newton-RaChson) are sketched. Advantages and disadvantagp^ of
these approaches are presented along with a flow chart showing some of the

details of each. The basic question of numerical stability of the elasto-
4J	hydrodynamic lubrication solutions, especially in the pressure spike region,

is considered. Computers used to solve this important class of lubrication
problems are briefly described, with emphasis on recently developed
supercomputers.

INTRODUCTION

Elastohydrodynamic lubrication is a form of fluid-film lubrication where

elastic deformation of the lubricated surfaces becomes significant. It is
usually associated with highly stressed machine components such as rolling-
element bearings and gears. Historically, elastohydrodynamic lubrication may

be viewed as one of the major developments in the field of lubrication in the
twentieth century. Its recognition not only revealed the previously un-

suspected regime of lubrication in highly stressed nonconformal machine ele-
ments, but it also brought order to the complete spectrum of lubrication
regimes, ranging from boundary to hydrodynamic.

The present paper attempts to review the methods of obtaining approximate

numerical solutions to boundary-value problems that a r ise in tribology. The
central task is to reduce the relevant differential and integral equations to

algebraic ones that can be solved by familiar methods. Though the material
is primarily illustrated by elastohydrodynamic lubrication problems, it is

directly applicable to other areas of lubrication as well as to other engi-
neering disciplines such a, heat transfer and fluid mechanics.

The highlignts of four main approaches to the elastohydrodynamic lubrica-

tion problem, namely the direct method, the inverse method, the quasi-inverse
method, and the Newton-Raphson method, are covered, and the advantages and dis-
advantages of each method are discussed. The important question of numerical

stability of solutions, especially in the pressure spike region, is considered.
No attempt is made herein to be rigorous or complete. The chief purpose is to

introduce the various techniques in a systematic manner and to indicate their
general regimes of validity. Computers used to solve this important class of
lubrication problem are briefly described with an emphasis on recently
developed supercomputers.
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SYMBOLS
OF POOR QUALITY

I

a,b Constants used to define density, m2/N

D Influence coefficient used in elasticity calculation, m3/N

E Modulus of elasticity, N/ m2

E'

1—v2	 1—v2
Effective elastic modulus, 2	 --E a + --E--b—	 N/m2

a	 h

f Iteration damping factor

g Output/input amplitude ratio used in stability analysis

h Film shape, 'Ti

he Film shape obtained from elasticity calculation, m

h i Film shape obtained from inverse Reynolds equation, m

h0 Film shape constant, m

hm Film thickness when	 dp/dx = 0, m

K Wavelength used in stability analysis

p Pressure, N/ m2

PO Initial	 pressure, N/m2

P I Inlet pressure, N/m2

P2
Pressure 'n contact and outlet, N/m2

R Effective radius, m

R i Residual vector

r Curvature radius, m

T,S Banded matrices

u Mean velocity,	 (u a + ub )12, m/s

Xa Eigenvector

x,y Coordinate system

a Pressure—viscosity coefficient of lubricant, m2/N

a Elastic deformation, m

a Pressure difference, p
(n+1) 

— p (n) ,	 N/m2

n Absolute viscosity at gage pressure, N s/m2

'	 no Viscosity at atmospheric pressure, N s/m2

X01
Eigenvalue

V Poisson's ratio

P Lubricant density, N s`/m4

P O Density at atmospheric pressure, N s2/m4

I

2



Subscript s:

a	 Solid a

b	 Solid b

x9 y 	 Coordinate system
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BASIC EQUATIONS

The elastohvdrndvnaNiC lubrication problem is as follows: given two
elastic, independently rotating solids immersed in oil and pressed together by
an external force, find the pressure distr i bution and film Shape in the region
of the lubricating contact. This requires calculating the pressure distribu-
tion within the conjunction, at the same time allowing for the effects this
pressure will have OM the properties of the fluid and on the geometry of the
elastic solids. The solution also provides the Shape of the lubricant film,
particularly the minimum film thickness between the solids.

The basic equations used in elastohvdrVdvnaniC lubrication are as follows:

Lubrication Equation /Reynolds Equation)

88	 ^^--	 ^^ +---^^ = l2u -- (ph)	 /l)
8« ^ n V«^	 ay (2-h3 n 8y^Vx`	 '

x 	 v
where u = /ua + ub\/2

Viscosity Variation

n ~ no mpe	 /2)`'

where no is the coefficient of absolute dynamic viscosity at atmospheric
d	 i the	 i	 itvcoefficient f th8 fl id	 Valuespressure ^n	 m	 ^	 ^ pres^ur^—v ^c^^ ~	 ^	 fluid.

of mp may be as high as 10.

Density variation

Tvoically

P = o0 	 +
^	 ^	 ~')

For mineral Oils the values Of a and b yield a maximum density increase of
about 35 percent. .	 .

Elasticity Equation 
	

'
r|'	

|Z^O =	 /4\	 ^	 |nT'	 ' '	 ^	 |
^ 0	 x — x \^ + ^ 	 t^^	 l/y,	 l/~ 

/

]

^^^^r'^^^—
^"wmw^

(3)

where
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El — 2	
1 — va	 1 — vb

E
r + Eb

Film Shape Equation

h ( x , y ) = h0 + 2R + 2R + 6(x.y)
x	 v

where

1	 1 + 1

R 	 rax	 rb x

1	 1 + 1
> y = ray rb y

Approaches that have been used in analyzing elastohydrodynamically lubricated

conjunctions are presented briefly in the following sections.

DIRECT METHOD

The direct method solves the Reynolds equation for the pressure distribu-

tion arising from a given film shape. A flow diagram of the direct method
used by Hamrock and Dowson (1976) is presented in Fig. 1. The modified pres-
sure shown on the left of Fig. 1 contains a damping factor to control numerical
convergence. This pressure is then used to determine changes in the film

shape. However, for maximum Hertzian contact stresses exceeding 0.5 GPa, even
with this damping factor, the direct method is sometimes found to diverge.

Nevertheless, Hamrock and Dowson (1981) were able to obtain useful formulas
that cover a complete spectrum of contact geometries (ranging from point to
line contacts), materials (hard and soft), and lubricant availability (fully
flooded or starved conditions). These theoretical film thickness formulas
were found to have a pleasing agreement with the experimental findings of
Dalmaz ane Godet (1978), Kunz and Winer (1977), and Koye and Winer (1980) even

at relatively large maximum Hertzian contact stresses (1.5 GPa). The reason
for this seems to originate partially from the linearity of the minimum film
thickness - load relationship when plotted on a log-log scale.

INVERSE METHOD

The Reynolds equation (Eq. (1)) is normally regarded as determining the

pressure distribution corresponding to a given film shape. In the inverse
method adopted by Dowson and Higginson (1959), however, the equation is used
to find the film shape responsible for the generation of a given pressure dis-
tribution. That is, for a given load, an initial pressure profile (slightly
different from Hertzian) is chosen. The film thickness is calculated twice,

once by using the elasticity equation and again from the Reynolds equation.
An elastohydrodynamic lubrication solution is obtained when the discrepancy
between these two film profiles is sufficiently small. If the film shapes are
not in agreement, the pressure profile is modified to improve the agreement
between them. A flow diagram of the inverse method is shown in Fig. 2.

4
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Some limitations of the inverse method are listed below:

(1) It is not suited for lightly loaded cases where the film shape in

the contact region is not parallel.

(2) Although the computational inethod of Dowson and Higginson (1959)

produced an acceptable solution in a small number of cycles, the procedure was
not fully automatic. Judgement was needed in effecting the necessary modifi-
cation of the pressure curve on the basis of the discrepancies between the
elastic and inverse Reynolds film shape calculations.

(3) It is only suitable for one-dimensional problems as pointed out by

Rohde and Oh (1975). Where more than one spatial variable is involved, the

Reynolds equation cannot be so readily integrated to express the film profile
as a function of pressure.

QUASI-INVERSE METHOD

With regard to limitation (3) given above, it should be pointed out that

Evans and Snidle (1982) have recently used a quasi-inverse method in solving a
two-dimensional elastohydrodynamic lubrication problem and have obtained good
results for heavily loaded conditions. In contrast to solving an Plgebraic
cubic equation as Dowson and Higginson (1959) did for the one-dimensional
problem, Evans and Snidle (1982) have solved the Reynolds equation for the
two-dimensional problem as a first-order Differential equation in the film
shape. They use a direct method in the inlet region, where the pressure in

the conjunction is low, and the inverse method els ,where. Figure 3 shows the
boundaries between the computing regions used in the quasi-inverse method.

The circle in Fig. 3 represents the corresponding Hertzian area of dry contact.
The curve AA is the starting point for the inverse solution of the Reynolds
equation. The curve BB, which is downstream of AA, is the downstream bo,.ndary

of the region over which a direct solution to the Reynolds equation is ob-
tained. The procedure is summarized as follows:

(1) Assume an initial pressure pO(x,y).

(2) Use elasticity to calculate film shape he(x,y).

(3) Use the direct method to calculate pressure P1(x,y) upstream of BB.

(4) Adjust the film shape constant ho until integrated load agrees with
input load.

Assume that the pressure downstream of BB initially is pO(x,y).

(5) Use the inverse hydrodynamic approach to calculate the film shape

hi(x,y) downstream of AA.

(6) Adjust pressure downstream of BB with

he(x.Y)
P 2 (x 'Y) = PO ( x 'Y) 2 -x.Y

i
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(7) Between AA and BB use a weighted mean of pl(x,y) and p2(x,y) for
the new pressure.

(8) Continue calculations, returning to (2) until little change in pres-

sure occurs throughout the conjunction.

The position of BB in Fig. ? is located where the viscosity—pressure exponent

ap - 1 or 2. The boundary AA is positioned two or , more grid points upstream
of BB.

It appears that the Evans and Snidle (1982) approach is able to get con-

verged solutions fo r Hertzian contact stresses up to 1.5 Va. This is a
threefold increase in stress over the direct method and within the range that
nonconformal contacts such as rolling element bearings and gears experience.

A limitation of the approach is that a good initial pressure profile is needed
since ;.he pressure in the zone between curves AA and BB is constrained to
very slowly by virtue of their very small separation.

NEWTON—RAPHSON METHOD

Both in its direct and inverse farms, the Reynolds equation is nonlinear

(except the isoviscous, incompressible direct case), so that the Newton method

along with its variations suggests itself as a powerful aEproach to the
problem. Applied to an algebraic equation f(p) = 0, the 'Newton method pro—
vjdys a systematic and usually convergent improvement on ;1 approximation
p n	 to Qne o	 he roo s	 Thep $iQ^ple algorithm that resuit^ can be expressed
as p (n+l j = ptn — f(ptnj }/f'( l' Tp wN̂j h shows that the correction is always
proportional to the residual error f(p 1n ^). The Newton method for a func-
tional equation likewise produces an algorithm for which the correction to the
solution depends on the residual, with the chief difference being that the
correction function itself satisfies a differential equation. With suitable
boundary conditions this equation supplies convergent corrections to each
previous approximation.

Though the Newton—Raphson method is capable of solving the most general

form of the Reynolds equation, we limit our demonstration of the method here
to the one—dimensional, incompressible case. For this situation equation (1)
can be written as

3

f (P) = a h ^- — 12u ah = 0	 (6)
ax	 ax	 ax

The Newton—Raphson method implies that

f (p (n) ) + A df dp n) ) = 0	 ( 7)

where

A = p (n+l) — p(n)	 (8)

The index n refers to the nth iterative approximation. But

6
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d
li e = 0

By making use of Eqs. (6) and (9), Eq. (7) can be rewritten as

	

0 = d (h' do 	 _ 12u dh + d [_ a eh 3 ddp(n)

	

U n ax	 Tx UT	 n dx

+ h3 de + 3h2 a a d	
- 12u d  a
	

(10)n ax	 n	 x	 x

In Eq. (10) a(e) is the elastic deformation due to the pressure difference

between the present and previous cycles at a given location.

Figure ; is a flow diagram showing how the Newton-Raphson method applies
to the elastohydrodynamic lubrication problem. There art +tO ree main loops.
The innermost loop solves for the pressure difference o n 1 from Eq. (10)
while the viscosity and film thickness at any x location are held constant.
Within this loop the elastic deformation a(e) due to the pressure difference
e is continuously updated. With this converged solution on the pressure
difference in the inner loop, the new pressure throughout the conjunction can
be evaluated, and the viscosity and tilm shape are recalculated in the second
loop. This loop is continued until there is little change in the pressure
throughout the conjunction. The final loop requires that the load obtained
from integrating the pressure is in agreement with the inputted load.

Rohde and Oh (1975) applied higher order finite elements (cubic splines,

cubic Hermite polynomials) with the Newton-Raphson iteration to solve lightly
and iioderately loaded cases (maximum Hertzian contact stress less than

0.8 GPa). Numerical instabilities were found for larger maximum Hertzian
contact stresses.

CONVERGENCE AND STABILITY

Hitherto several approaches to the elastohydrodynamic lubrication problem

have been considered, each of which finds application in some regime of the
operating parameters contained in the model equations. However, since none of
the methods produces a solution (i.e., a compatible pressure distribution and
film shape) in closed mathematical form, questions of convergence and stability
of the various results assume considerable importance. Moreover, in arriving
at an acceptable solution, it should not be overlooked that while uniqueness

of solutions is generally assumed, it has never been rigorously demonstrated
in the case of the particular nonlinearities presented by the elastohydro-

dynamic lubrication problem. The rather weak and transparent basis for this

assumption is simply that, as a matter of experience, only one numerical solu-
tion is ever found for any specified set of operating parameters.

Linear Analysis

In view of the complications introduced by nonlinearity, combined with

the great variety of numerical approximation schemes within the general cate-

7
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gories of finite element and finite difference, we do not attempt the most
general analysis of convergence or stability here. Instead, we examine the

behavior of a linearized method, such as the Newton-Raphson method, which can
be suitably reduced to algebraic form to be solved by an iterative scheme.
Some comments are also included on the stability of the pressure distribution

under conditions such that several extrema, including a spike, may occur in
the conjunction.

Consider for example the innermost iterative loop of the Newton method

shown in the flow diagram of Fig. 4. The differential equation (Eq. (10)) for
the pressure correction is linear in both a and a, and as implemented in
Fig. 4 its solution resembles that of time march methods in the transient
problem with iteration count replacing time advance. An eigenvalue analysis

of the convergence of such a loop is therefore appro :3riate. An equivalent
linearized approach using an explicitly time-dependent perturbation was adopted
by Kostreva ( 1983), who was able to construct a stability map in the space of
two nondimensional parameters. Curiously, however, most of the existing
elastohydrodynamic solutions lie well within the unstable region of this map.

Each term of Eq. (10) belongs to one of three types: (1) linear in e,
(2) linear in a, or (3) independent of both a and a. In the algebraic
reduction of the derivatives involved for types (1) and (2), their contribu-
tions to Eq. (10) can be written in matrix form, respectively, as Tijoj and
S i 6j, where the summation convention is used. The matrices T and S will
usually be banded with elements given by the initial ( or current) approxima-
tion to pressure p and film shape h. Single-subscripted quantities are
vectors whose elements are the nodal values on the chosen discrete mesh. Type

(3) terms are nonzero only when the pressure distribution fails to satisfy the
Reynolds equation and hence are known a^. +he vector of the residuals Ri. In
this representation Eq. (10) becomes

T i j ej + S i j ai - R  = 0	 (' 1)

If T is nonsingular, the direct solution of Eq. (11) is

o - A + Ba	 (12)

where A a T- 111 and B a -T- 1 S. Since the elastic displacement vector a is

not initially known, a is computed iteratively according to the prescription

e (n+l) - A + B6 
(n)
	 (13)

Similarly for the inverse method the solution of Eq. (11) appears as follows:

6 (n+1) T A' + B'e(n)
	

(13')

where A' and 6' require the nonsingularity of S.

To complete the iteration loop, the elastic equation relating a and a

is needed. The elasticity equation such as Eq. (4) can be expressed as

6 (n) - Da (n)
	

(14)
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which is not iterative. The solution of Eq. (13), making use of Eq. (14), is
thus

e(n) 	 F, (BD) mA	 (15)
m=0

which 1hows explicitly the proportign1lity of a to the modified residual

A a T- R. The limiting value of a n becomes

n-1

a = 1im A (n) = 1im 
2: 

(89)MA

n+W	 n+m m=0

or

a - (1 - BD) -1A	 (16)

The intermediate estimates a (n) are just partial sums in the expansion of the
inverse operator on the right side of Eq. (16).

Similarly for the inverse method, making use of Eqs. (13') and (14) gives

	

a=(I- B I D- 1)-I A'
	

(16')

Because of the ill condition of D, this segment of the inverse elastohydro-

dynamic lubrication problem is never actually solved this way. Consequently
tt^ e inverse method discussed earlier ends up with two film shapes for each

a tn) instead of generating the usual pressure w film shape loop.

From Eq. (16) it is easy to see how the inner loop of Fig. 4 behaves.

Let the eigenvector decomposition of the residual vector A be written as

A = F AaXa	 (11)
a

where A. is the (scalar) coefficient of the a th eigenvector X. of the
product matrix BD corresponding to eigenvalue x a . Inserting Eq. (11) into

Eq. (15) and summing the series yield

a	 Aa ^--xa 

(n)	 `	 aa 

L/.J

r	 1 - xn
X.

	 (18)

CL

which converges if ix ai < 1 for all a. When this holds, Fib. (16) and (18)
both lead to

a=^Act (1-x a ) -1 X a	(19)
a

9



This converged limit is quickly attained if all ix ai << 1. The most impor-

tant contributions to the sum are unfortunately the slowest to converge, and
it may thus be useful to test for max ix.i. When this is close to 1, and
particularly if it exceeds 1, the number of inner-loop cycles should be cur-
tailed. Control is then passed to the second iteration loop, where the matrix
BD and the residual vector A are recomputed from the new pressure and its
film shape.

This behavior of the inner loop of the Newton-Raphson method remains
essentially unaltered by the introduction of a damping factort. if (thl loop
is reentered with the weighted pressure distribution (1 - f)e(n11 + fa (n- ),

there is no change in the limiting iterate of Eq. (16). Only the intermediate
steps by which this is reached are affected. It is worth noting, however,

that any smallness criterion for the pressure changes used in determining an
exit from the inner loop should, for consistency, be multiplied by (1 - f).

Nonlinear System Response

Useful as this analysis can be in carrying out the first iteration, it

leaves unanswered the original question of overall convergence of the method.
Specifically, it does not address the modification in the eigenvalues of BD
when the middle iteration loop updates the pressure. Some limited appreciation

of the stability at this s age can be obtained b 	 egarding this loop as an

amplifier whose input p( n produces output p (n 1J . The parameters of the
amplifier are dependent on the input, reflecting the nonlinearity or feedback

aspects of elastohydrodynamic lubrication, and the objective is to achieve
unit gain at any frequency by adjusting the parameters (matrix elements).
Since the components of p are nodal pressures, frequency here refers to

spatial oscillation in the solution vector.

For illustrative purposes the treatment can be reduced to its simplest

form by considering the same one-dimensional incompressible flow problem as in
Eq. (6). The Reynolds equation in this situation can be integrated once to
give

h-h

E= 12un	 3
h

A typical solution of this equation is displayed in Fig. 5, which shows that

over a length AB comparable to the Hertzian diameter the elastohydrodynamic

lubrication film thickness may be substantially constant. The pressure and
hence also the viscosity are large in this parallel film region, so that char-

acteristics of the pressure profile are highly sensitive to the small differ-
ence (h - hm), where hm is the film thickness at the pressure extrema.

(20)

By superimposing a low-amplitude pressure ripple

the middle loop, the output ripple can be calculated
and the one-dimensional counterpart of Eq. (4). The
ratio or gain g in a region of almost constant film
to be given by the .pproximate propurtion

10

f

on the pressure input to

with the aid of Eq. (20)
output/input amplitude
 thickness is then found

r

I

i

a 
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g 
	 (21)

where K is the wave number (reciprocal of wavelength) of the ripple. The

constant of this approximate proportionality depends on the contac^ geometry.

Equation (21) shows qualitatively how the middle iteration loop is ex-

pected to behave in the region AB of Fig. 5, where the pressure gradient is
still small and where the pressure extrema may occur. For given u, no, and
a values, h is essAntially determined independently of load so that interest
focuses on the p and K dependence of g. The larger g grows, the greater
becomes the amplification of any ripple, with consequent appearance of oscilla-

tions in the pressure distribution. The equation confirms the general experi-
ence that such are associated w':th high pressures, particularly on the upstream
side of the spike in the vicinity of B. It further suggests that oscillation
becomes of less concern at short wavelengths. Since the smallest wavelengths
involved are of the order of the mesh -.ize, numerical noise introduced by the
algebraic representation of the basic equations or by finite computer accuracy

is well attenuated. Greater difficulty is encountered at wavelengths compara-

ble to the length of the parallel film region, and this ultimately may lead to
distortion of much of the pressure curve there.

Although the validity of Eq. (21) breaks down for still larger wave-

lengths, it is clear that the system response to su;,h long-wavelength dis-

turbance is given by its response to changes in ho, the additive constant in
the film shape Eq. (5). This behavior is contro l led separately in the third
iteration loop of Fig. 4 and as such is not treated by present considerations.

SUPERCOMPUTERS USED IN EHL

The computers used to solve elastonydrodynamic lubrication problems in

the 1950's were either mechanical or the first of the electronic computers and
were considera5ly different from the supercomputers available today. The

present-day powerful computing machines known as supercomputers have peak
computing speeds exceeding 100 million operations per second. This is to be
contrasted with the first commercial electronic computer delivered in 1951,

which had a peak computing speed of around 600 operations per second. This
means that the speed of large-scale scientific computers has doubled, on the
average, every 2 years. Although the current performance levels of such
machines owe much to the rapid advance of microelectronics, new concepts in
computer architecture have been equally important. The term 'architecture'
refers to the logical organization of the computer as it is seen by the pro-
grammer. The architectural innovations of greatest significance are those
that enable the machine to carry out many similar operations in parallel, or
concurrently. This is referred to as vector computation. The latest super-
computers allow the programmer to prescribe many different elementary steps to
be executed simultaneously, whereas earlier computers could only handle a
single sequence of elementary steps executed one at a time. This is referred
to as scalar computation. Levine (1982) gives a thorough and useful descrip-
tion of supercomputers. {

The most recent supercomputers provide a quantum jump in the speed of

computation, and their effect in solving elastohydrodynamic lubricut.ion prob-
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lems in the next decade should be significant. Hamrock (.982) demonstrated

the effect of using such computers in performing elastohydrodynamic film shape

calculations. Both scalar and vector versions of the film shape code were
presented. The film shape calculations were chosen since in elastohydrodynamic

lubrication solutions over 80 percent of the conputatien time is spent in the
straightforward calculation of elastic deformation.

Before proceeding it might be well to point out more specifically what is

meant by scalar and vector coding. Scalar coding is conventional sequential
coding that has been used universally for digital computers since their
earliest development. 	 the other hand, the process of writing programs in
vector code consists of organizing programs so that the maximum possible num-
ber of arithmetic and logical operations can be processed in parallel. Such

'vectorization' is most easily introduced and illustrated by an example.

Consider arrays A and B, each consisting of 100 numbers, which are to

be added to form array C, where C •- Ai + Bii, i . 1, 	 ., 	 100. The tradi-
tional 'scalar' computer executes f^ve assembly language instructions each

100 times. There are two reads from memory (Ai and Bi), one addition, one
store to memory (for C i ), and an instruction that increments a counter, tests,
and branches back to load the next pair of input operands. Thus 500 scalar

instructions are executed in consecutive sequence to add arrays A and 6.
A vector computer's compile- can generate 'vector' otject code, which executes

very differently. The vector code for adding the 100 pair, of operands still
uses the first four of these in!'V-fictions for each pair. But instead of con-

tinually branching back for the next pair, execution proceeds by continuously
streaming operands from central memory into the central processor, where the
addition takes place, and continuously streaming answers back into memory in
'pipeline' fashion. During execution :tf the vectorized addition some elements

of A and B are being read from central memory, some elements of A and
B are undergoing addition in the vector pipeline, and some are being written
in memory.

This brief example illustrates the major conceptual difference between

the two modes of operation. It should . clear from this that many kinds of
repeated instructions can be processed in vector form, with consequent enormous
savings in overall time. It is also apparent that there are other situations
in which the pipeline mode will not operate. Perhaps the most common of these

in elastohydrodynamic J^bricrtion problems arise when a recursive 
i^ 

iterative

process requires the i , result before it can generate the (i + 1) , as in

direct integration of a differential equation. Often a way may be found to

avoid such conditions, but ever when this i s not possibleand the computer is
forced into the scalar mode, its operation speed is still considerably superior
to previous generation computers.

Table I shows the scalar and vector computation times expressed in nano-

seconds for varying vector 'length', which here corresponds to the number of
nodes in the finite difference representation of the elastohydrodynamic lubri-
cation solutions. A considerable decrease in computation time is seen for the
vector computation over that of the scalar computation. The last column of
the table gives the ratio of scalar to vector times and indicates than, as the
vector .ength increases, the ratio also increases significantly, although
eventually an asymptotic condition is approached. The run times for the two
types of code indicate that over a 50-to-1 speedup of scalar to vector compu-

12
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tation time is obtained for vector lengths typically used in elastohydrodynamic
lubrication analysis.

CONCLUSIONS AND OUTLOOK

The aim herein has been to examine the principal approaches devised to
tackle the technologically important elastohydrodynamic lubrication problem.
Without entering into details of numerical approximation schemes applicable to
the nonlinear equations involved, it is apparent that under the general head-
ings of finite difference and finite element, sufficiently powerful methods
exist to produce some useful solutions to the problem. Executing such schemes
by a multigrid approach could lead to further substantial improvements over
the conventional fixed-mesh methods most widely used at present. The avail-
ability of supercomputers combining high speed and large memory capacity
removes most obstacles to implementing the chosen scheme, so that the effi-
ciency or convergence rate of the method is no longer the overriding concern.
The question of central importance has now become the stability of the solu-
tion method.

Experience with finite element techniques iri elastohydrodynamic lubrica-
tion applications is accumulating, as evidenced by the two sessions of this
conference devoted to them, and it is likely that such techniques could have
some advantages over the currently more familiar finite difference methods.
Thus, it often appears that significantly fewer nodal values are required in
the finite element representation than for finite differences. Nevertheless
the strong impetus behind finite element analysis, namely, its suitability for
problems of little or no symmetry, as, for example, in classical elastostatics,
is lacking in elastohydrodynamic lubrication, where nominal bearing geometry
is often required to be highly symmetrical.

Practical experience indicates an advantage to using an inverse method at
higher maximum pressures and conversely a direct method at lower pressures.
The linearized Newton-Raphson method of improving solutions to functional
equations runs in either the direct or inverse mode according to which ap-
proach to the hydrodynamic equation is taken. So far, no ser-;ous attempt has
been made to invert the elasticity equation, but Saint-Venant's principle
strongly suggests that such an approach would be hopeless.

Turning to questions of stability, again the issue is not between finite
difference and finite element. Both approaches can be analyzed in the same
manner. A beginning at such analysis has been made by Kostreva (1983), whose
stability map uses a criterion based on the eigenvalue behavior of a certain
linearized form of the Reynolds equation.

A feature shared by many elastohydrodynamic lubrication calculations has
been that their implementation by computer is not fully automatic. The solu-
tion evolves stepwise from the initial guess, and the criterion for passing to
the next step (iteration) requires some judgement or a further guess not easily
reduced to a sequence of simple branching decisions. As such the pathway to a
final solution has been neither completely described nor properly optimized
and the nonquantifiable skills of the programmer have played a prominent role.
To exploit more fully the advantages of automati ,- computation, it is thus
necessary to develop improved understanding of the convergence properties of
the various steps and the ability to decide if the current step is actually
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moving toward or away from a solution. Since several constraints are imposed
which it is difficult to tighten simultaneously, the process at intermediate

stages may seem to be diverging from the viewpoint of some single constraint.
It is common, for example, to find a pressure profile making improvements in

the film shape while diverging from the required load, to which adjustments
are mads only at a later stage. An optimized strategy might handle the load
at the same time. In brief, criteria are needed to enable control to pass
automatically between the iterative loops.

It was to this end that the analysis of the behavior of one type of

iteration loop was undertaken here. A criterion for convergence in terms of
eigenvalues of the operator representing the net effect of the loop was
derived. Although it still remains to develop this into concise executable
form, progress toward this goal is being made and further effort in this
direction is certainly worthwhile.

Similarly, the treatment given here of the much more difficult stability

problem associatfd w 4 th the high-pressure region of the contact is a beginning
attempt to understand the conditions for which reliable solutions can be gen-

erated there. Further work, however, is needed to improve the analysis as the
spike region itself is entered, where the pressure gradient grows large.

If the potential of such approaches to program automation is fulfilled,

then prosp,:cts are excellent for considering additional aspects of the elasto-
hydrodynamic lubrication problem, such as

(1) Non-Newtonian effects of the fluid

(2) Surface roughness effects
(3) Thermal effects

With the use of supercomputers for the incorporation of these coupled effects

it can be predicted that run times will be dramatically reduced during this
decade. Such investi tions will then become much more feasible than in the
past, with a correspon ng gain in the reliability and range of application of
the results.
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TABLE I. - COMPARISON OF SCALAR AND VECTOR
COMPUTER RUN TIMES FOR DIFFERENT

VECTOR LENGTHS

Vector
length,
NX

Scalar
nsec

timej Vector time,
nsec

Scalar time

Vector time

10 241 70 3.44
30 1 179 155 7.61
50 2 726 243 11.22

100 9 252 483 19.28
300 73 357 1 933 37.95
500 198 282 4 188 47.35
700 383 997 7 242 53.02

1 000 776 588 13 363 58.11
3 000 6 890 354 99 988 68.91
5 000 19 084 530 266 602 71.58
7 000 37 358 446 513 218 72.79

10 000 76 171 860 1 033 169 73.73
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Figure 4 - Flow diagram of Newton-Raphson method.
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Figure 5. - Cxample of an ehl pressure distribution and film profile. The
operating parameters have been chosen to produce a minimum in the
pressure curve between the Hertzian maximum and the spike near the
exit. Between points A and B, the film thickness is nearly constant -
as a consequence of the similarity of the pressure to the Hertzian dis-
tribution, shown for comparison.
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