61 research outputs found
Antimalarial Iron Chelator, FBS0701, Shows Asexual and Gametocyte Plasmodium falciparum Activity and Single Oral Dose Cure in a Murine Malaria Model
Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S)3”-(HO)-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high µM range. Here we show that FBS0701 has inhibition concentration 50% (IC50) of 6 µM for Plasmodium falciparum in contrast to the IC50 for deferiprone and deferoxamine at 15 and 30 µM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials
Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito.
Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field
A G358S mutation in the Plasmodium falciparum Na<sup>+</sup> pump PfATP4 confers clinically-relevant resistance to cipargamin
Diverse compounds target the Plasmodium falciparum Na(+) pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4(G358S) parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na(+) regulation. The G358S mutation reduces the affinity of PfATP4 for Na(+) and is associated with an increase in the parasite’s resting cytosolic [Na(+)]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4(G358S) parasites, and that their combination with unrelated antimalarials may mitigate against resistance development
A no film slot blot for the detection of developing P. falciparum oocysts in mosquitoes.
Non-microscopy-based assays for sensitive and rapid detection of Plasmodium infection in mosquitoes are needed to allow rapid and high throughput measurement of transmission intensity and malaria control program effectiveness. Here, we report on a modified enhanced chemiluminescence-based slot blot assay for detection of Plasmodium falciparum (Pf) circumsporozite protein (PfCSP) expressed on parasite oocysts developing inside the mosquito midgut. This modified assay has several novel features that include eliminating the need for exposure to autoradiography (AR) film, as well as utilizing a novel high affinity anti-CSP antibody, and optimizing assay procedures resulting in significant reduction in the time required to perform the assay. The chemiluminescent signal for the detection of PfCSP in mosquito samples was captured digitally utilizing the C-Digit blot scanner that, allowed the detection of 0.01 pg of recombinant P. falciparum CSP and as few as 0.02 P. falciparum oocysts in a little over two hours. The earlier ECL-SB detected rCSP and oocysts and took approximately 5 h to perform. Whole mosquito lysates from both high and low prevalence-infected mosquito populations were prepared and evaluated for PfCSP detection on the ECL-SB by both AR film and digital data capture and analysis. There was a 100% agreement between the AR film and the C-Digit scanner methods for PfCSP detection in randomly sampled mosquitoes. This novel "No Film" Slot Blot assay obviates the need for AR film exposure and development and significantly reduces the assay time enabling widespread use in field settings
Gametocytocidal Screen Identifies Novel Chemical Classes with <i>Plasmodium falciparum</i> Transmission Blocking Activity
<div><p>Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC<sub>50</sub>s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds.</p></div
Inhibition by FDA drug library.
<p>SYBR Green I assay results for the Johns Hopkins Clinical Compound Library version 1.3 of FDA approved drugs screened at 20 µM. Plot of percentage of gametocytocidal activity of 1,584 compounds compared to clotrimazole control.</p
Inhibition by MMV Malaria Box.
<p>SYBR Green I assay results for the MMV box screened at 10 µM. Plot of percentage of gametocytocidal activity of 400 compounds compared to pyrvinium pamoate control.</p
- …