8 research outputs found

    PAH chemistry at eV internal energies. 1. H-shifted isomers

    Full text link
    The PAH family of organic compounds (polycyclic aromatic hydrocarbons), involved in several fields of chemistry, has received particular attention in astrochemistry, where their vibrational spectroscopy, thermodynamic, dynamic, and fragmentation properties are now abundantly documented. This survey aims at drawing trends for low spin-multiplicity surfaces of PAHs bearing internal energies in the range 1-10 eV. It addresses some typical alternatives to the ground-state regular structures of PAHs, making explicit possible intramolecular rearrangements leading to high-lying minima. These isomerisations should be taken into consideration when addressing PAH processing in astrophysical conditions. The first part of this double-entry study focuses on the hydrogen-shifted forms, which bear both a carbene center and a saturated carbon. It rests upon DFT calculations mainly performed on two emblematic PAH representatives, coronene and pyrene, in their neutral and mono and multi-cationic states. Systematically searched for in neutral species, these H-shifted minima are lying 4-5 eV above the regular all-conjugated forms, and are separated by barriers of about one eV. General hydrogen-shifting is found to be easier for cationic species as the relative energies of their H-shifted minima are 1-1.5 eV lower than those for neutral species. As much as possible, classical knowledge and concepts of organic chemistry such as aromaticity and Clar's rules are invoked for result interpretation.Comment: 35 pages, accepted by Molecular Astrophysic

    PAH chemistry at eV internal energies. 2. Ring alteration and dissociation

    Full text link
    Recognized as important interstellar constituents, polycyclic aromatic hydrocarbons (PAHs) have been intensively studied in astrochemistry and their spectroscopy, thermodynamics, dynamics, and fragmentations are now amply documented. There exists typical alternatives to the ground-state regular planar structures of PAHs, as long as they bear internal energies in the range 1-10 eV. Resulting from intramolecular rearrangements, such high-lying minima on the potential- energy surfaces should be taken into consideration in the studies of PAH processing in astrophysical conditions. Resting upon DFT calculations mainly performed on two emblematic PAH representatives, coronene and pyrene, in their neutral and mono and multi-cationic states, this second survey addresses the following alternatives: (1) opened forms containing ethynyl or 2- butynyl groups, (2) vinylidene isomers, in which phenanthrene patterns are reorganized into dibenzofulvene ones, (3) twisted forms, where external CH=CH bonds can be partly twisted, and (4) bicyclobutane forms, in which the latter are integrated in saturated bicyclic forms. A few scenarios for elimination of fragments H, H2, C2H2 and C2H4 are explored. As far as possible, familiar concepts of organic chemistry, such as aromaticity or Clar's rules, are invoked for interpretations.Comment: 65 pages, accepted by Molecular Astrophysic

    RNAseq-dataset1_20230126

    No full text
    RNAseq raw data from Seqcenter (QUO1003393) Illumina sequencing. Illumina adapter sequences have been trimmed off during the demultiplexing process

    Couplage entre maturation des ARN de transfert et maturation de l’ARN ribosomique chez B. subtilis

    No full text
    Cellular protein synthesis both requires functional ribosomes and mature transfer RNAs (tRNAs) as adapter molecules. The ribosomes are large essential ribonucleoprotein complexes whose biogenesis accounts for most of cellular transcription and consumes a major portion of the cell’s energy. Ribosome biogenesis is therefore tightly adjusted to the cellular needs and actively surveilled to rapidly degrade defective particles that could interfere with translation. Interestingly, tRNAs and ribosomal RNAs (rRNAs) are both transcribed from longer primary transcripts and universally require processing to become functional for translation. In this thesis, I have characterized a coupling mechanism between tRNA processing and ribosome biogenesis in the Gram-positive model organism Bacillus subtilis. Accumulation of immature tRNAs during tRNA maturase depletion, specifically abolishes 16S rRNA 3’ processing by the endonuclease YqfG/YbeY, the last step in small ribosomal subunit formation. We showed that this maturation deficiency resulted from a late small subunit (30S) assembly defect coinciding with changes in expression of several key 30S assembly cofactors, mediated by both transcriptional and post-transcriptional effects. Interestingly, our results indicate that accumulation of immature tRNAs is sensed by the stringent factor RelA and triggers (p)ppGpp production. We showed that (p)ppGpp synthesis and the accompanying decrease in GTP levels inhibits 16S rRNA 3’ processing, most likely by affecting GTPases involved in ribosome assembly. The inhibition of 16S rRNA 3’ processing is thought to further lead to degradation of partially assembled particles by RNase R. Thus, we propose a model where RelA senses temporary slow-downs in tRNA maturation and this leads to an appropriate readjustment of ribosome biogenesis. This coupling mechanism would maintain the physiological balance between tRNAs and rRNAs, the two major components of the translation machinery.La synthĂšse des protĂ©ines cellulaires requiert Ă  la fois des ribosomes fonctionnels et des ARN de transfert (ARNt) matures comme molĂ©cules adaptatrices. Les ribosomes sont de larges complexes ribonuclĂ©oprotĂ©iques dont la biogenĂšse reprĂ©sente la plupart de la transcription cellulaire et consomme une majeure partie de l’énergie de la cellule. Par consĂ©quent, la biogenĂšse des ribosomes fait l’objet d’une rĂ©gulation importante afin d’ajuster le nombre de ribosomes aux besoins de la cellule et de dĂ©grader efficacement les particules dĂ©fectueuses qui pourraient interfĂ©rer avec la traduction. Les ARNs ribosomiques (ARNr) et les ARNt sont tous deux transcrits sous formes de prĂ©curseurs et sont universellement maturĂ©s pour devenir fonctionnels pour la traduction. Ce travail de thĂšse a permis de mettre en Ă©vidence un couplage entre la maturation des ARNt et la biogenĂšse des ribosomes chez la bactĂ©rie modĂšle Ă  Gram positif Bacillus subtilis. Ainsi, l’accumulation d’ARNt immatures lors d’une dĂ©plĂ©tion en enzymes de maturation, abolit spĂ©cifiquement la maturation en 3’ de l’ARNr 16S par l’endoribonuclĂ©ase YqfG/YbeY, derniĂšre Ă©tape dans la formation de la petite sous-unitĂ© ribosomique (30S). Nous avons mis en Ă©vidence que ce dĂ©faut de maturation rĂ©sultait d’un dĂ©faut d’assemblage tardif du 30S coĂŻncidant avec des changements d’expression de plusieurs facteurs d’assemblage du ribosome. Nous avons montrĂ© que cette modulation d’expression provenait d’effets transcriptionel et post-transcriptionel. De façon inĂ©dite, nos rĂ©sultats indiquent que l’accumulation d’ARNt immatures est perçue par RelA (le facteur de la rĂ©ponse stringente), dĂ©clenchant la production de (p)ppGpp. Nous avons observĂ© que cette synthĂšse de (p)ppGpp et la baisse concomitante des niveaux de GTP cellulaire, inhibe la maturation de l’ARNr 16S en 3’, probablement via un blocage des GTPases impliquĂ©es dans l’assemblage des ribosomes. L’inhibition de la maturation de l’ARNr 16S cĂŽtĂ© 3’ est supposĂ©e conduire, par la suite, Ă  une dĂ©gradation des particules partiellement assemblĂ©es par la RNase R. Ainsi, nos rĂ©sultats supportent un modĂšle oĂč RelA jouerait un rĂŽle central ; en percevant une dĂ©ficience de maturation des ARNt et en ajustant, en consĂ©quence, la biogenĂšse des ribosomes via la production de (p)ppGpp. Ce mĂ©canisme de couplage permettrait de maintenir un Ă©quilibre fonctionnel entre ARNt et ARNr, les deux composants majeurs de la machinerie de traduction

    Structures of B. subtilis Maturation RNases Captured on 50S Ribosome with Pre-rRNAs.

    No full text
    The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing
    corecore