4 research outputs found

    Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    No full text
    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis­(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO–LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) <i>via</i> d<i>I</i>/d<i>V</i> mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate

    Bottom-Up Synthesis of <i>N</i> = 13 Sulfur-Doped Graphene Nanoribbons

    No full text
    Substitutional doping of graphene nanoribbons (GNRs) with heteroatoms is a principal strategy to fine-tune the electronic structure of GNRs for future device applications. Here, we report the fabrication and nanoscale characterization of atomically precise <i>N</i> = 13 armchair GNRs featuring regioregular edge-doping with sulfur atoms (S-13-AGNRs) on a Au(111) surface. Scanning tunneling spectroscopy and first-principle calculations reveal modification of the electronic structure of S-13-AGNRs when compared to undoped <i>N</i> = 13 AGNRs
    corecore