43 research outputs found

    Full-Duplex Enabled Mobile Edge Caching: From Distributed to Cooperative Caching

    Get PDF
    Mobile edge caching (MEC) has received much attention as a promising technique to overcome the stringent latency and data hungry requirements in future generation wireless networks. Meanwhile, full-duplex (FD) transmission can potentially double the spectral efficiency by allowing a node to receive and transmit in the same time/frequency block simultaneously. In this paper, we investigate the delivery time performance of full-duplex enabled MEC (FD-MEC) systems, in which the users are served by distributed edge nodes (ENs), which operate in FD mode and are equipped with a limited storage memory. Firstly, we analyse the FD-MEC with different levels of cooperation among the ENs and take into account a realistic model of self-interference cancellation. Secondly, we propose a framework to minimize the system delivery time of FD-MEC under both linear and optimal precoding designs. Thirdly, to deal with the non-convexity of the formulated problems, two iterative optimization algorithms are proposed based on the inner approximation method, whose convergence is analytically guaranteed. Finally, the effectiveness of the proposed designs are demonstrated via extensive numerical results. It is shown that the cooperative scheme mitigates inter-user and self interference significantly better than the distributed scheme at an expense of inter-EN cooperation. In addition, we show that minimum mean square error (MMSE)-based precoding design achieves the best performance-complexity trade-off, compared with the zero-forcing and optimal designs

    Some properties of the positive boolean dependencies in the database model of block form

    Get PDF
    The report proposes the concept of positive boolean dependency in the database model of block form, proving equivalent theorem of three derived types, necessary and sufficient criteria of the derived type, the member problem... In addition, some properties related to this concept in the case of block r degenerated into relation are also expressed and demonstrated here

    Malaria in central Vietnam: analysis of risk factors by multivariate analysis and classification tree models

    Get PDF
    BACKGROUND: In Central Vietnam, forest malaria remains difficult to control due to the complex interactions between human, vector and environmental factors. METHODS: Prior to a community-based intervention to assess the efficacy of long-lasting insecticidal hammocks, a complete census (18,646 individuals) and a baseline cross-sectional survey for determining malaria prevalence and related risk factors were carried out. Multivariate analysis using survey logistic regression was combined to a classification tree model (CART) to better define the relative importance and inter-relations between the different risk factors. RESULTS: The study population was mostly from the Ra-glai ethnic group (88%), with both low education and socio-economic status and engaged mainly in forest activities (58%). The multivariate analysis confirmed forest activity, bed net use, ethnicity, age and education as risk factors for malaria infections, but could not handle multiple interactions. The CART analysis showed that the most important risk factor for malaria was the wealth category, the wealthiest group being much less infected (8.9%) than the lower and medium wealth category (16.6%). In the former, forest activity and bed net use were the most determinant risk factors for malaria, while in the lower and medium wealth category, insecticide treated nets were most important, although the latter were less protective among Ra-glai people. CONCLUSION: The combination of CART and multivariate analysis constitute a novel analytical approach, providing an accurate and dynamic picture of the main risk factors for malaria infection. Results show that the control of forest malaria remains an extremely complex task that has to address poverty-related risk factors such as education, ethnicity and housing conditions

    Sub-optimal Deep Pipelined Implementation of MIMO Sphere Detector on FPGA

    Get PDF
    Sphere detector (SD) is an effective signal detection approach for the wireless multiple-input multiple-output (MIMO) system since it can achieve near-optimal performance while reducing significant computational complexity. In this work, we proposed a novel SD architecture that is suitable for implementation on the hardware accelerator. We first perform a statistical analysis to examine the distribution of valid paths in the SD search tree. Using the analysis result, we then proposed an enhanced hybrid SD (EHSD) architecture that achieves quasi-ML performance and high throughput with a reasonable cost in hardware. The fine-grained pipeline designs of 4 × 4 and 8 × 8 MIMO system with 16-QAM modulation delivers throughput of 7.04 Gbps and 14.08 Gbps on the Xilinx Virtex Ultrascale+ FPGA, respectively

    Professional Standards Review Organizations and Health Maintenance Organizations: Are They Compatible?

    Get PDF
    In freestanding n-type 4H-SiC epilayers irradiated with low-energy (250 keV) electrons at room temperature, the electron paramagnetic resonance (EPR) spectrum of the negative carbon vacancy at the hexagonal site, V-C(-)(h), and a new signal were observed. From the similarity in defect formation and the spin-Hamiltonian parameters of the two defects, the new center is suggested to be the negative C vacancy at the quasi-cubic site, V-C(-)(k). The identification is further supported by hyperfine calculations
    corecore