28 research outputs found

    Toward green steel: Modeling and environmental economic analysis of iron direct reduction with different reducing gases

    Get PDF
    The objective of the paper is to simulate the whole steelmaking process cycle based on Direct Reduced Iron and Electric Arc Furnace technologies, by modeling for the first time the reduction furnace based on kinetic approach, to be used as a basis for the environmental and techno-economic plant analysis by adopting different reducing gases. In addition, the impact of carbon capture section is discussed. A complete profitability analysis has been conducted for the first time, adopting a Monte Carlo simulation approach. In detail, the use of syngas from methane reforming, syngas and hydrogen from gasification of municipal solid waste, and green hydrogen from water electrolysis are analyzed. The results show that the Direct Reduced Iron process with methane can reduce CO2 emissions by more than half compared to the blast furnace based-cycle, and with the adoption of carbon capture, greenhouse gas emissions can be reduced by an additional 40%. The use of carbon capture by amine scrubbing has a limited economic disadvantage compared to the scenario without it, becoming profitable once carbon tax is included in the analysis. However, it is with the use of green hydrogen from electrolyzer that greenhouse gas emissions can be cut down almost completely. To have an environmental benefit compared with the methane-based Direct Reduced Iron process, the green hydrogen plant must operate for at least 5136 h per year (64.2% of the plant's annual operating hours) on renewable energy. In addition, the use of syngas and separated hydrogen from municipal solid waste gasification is evaluated, demonstrating its possible use with no negative effects on the quality of produced steel. The results show that hydrogen use from waste gasification is more economic with respect to green hydrogen from electrolysis, but from the environmental viewpoint the latter results the best alternative. Comparing the use of hydrogen and syngas from waste gasification, it can be stated that the use of the former reducing gas results preferable, from both the economic and environmental viewpoint

    Combined clean hydrogen production and bio-active compounds recovery from spent coffee grounds. A multi-perspective analysis

    Get PDF
    This study deals with the process simulation of an integrated system for energy production and valuable compounds recovery from spent coffee ground biomass and plasmix (non-recyclable plastic waste). The devised process consists of three maine units: a sub-critical water extraction column for the recovery of bio-compounds, an oxy-combustor of residual biomass and plasmix streams coupled with a production power energy unit, and a solid oxide electrolyzer (SOEC) for the production of pure H2 and O2. The process was exhaustively analyzed from an energy, exergy, environmental and economic point of view. The results of the analysis provided energy and exergy efficiencies higher than 60%, and the environmental analysis (CO2-cycle analysis) demonstrated a significant advantage of the process with respect to other hydrogen production methods. Finally, the feasibility of a plant with no net Greenhouse Gas emissions was shown to markedly depend on the costs associated to renewable energy sources

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-γ released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    An Overview of Waste Gasification and Syngas Upgrading Processes

    No full text
    International audienceThe increasing attention towards climate change and greenhouse gas emissions makes the exploitation of renewable energy sources one of the key pathways for sustainable power generation or chemical production [...

    An Overview of Waste Gasification and Syngas Upgrading Processes

    No full text
    The increasing attention towards climate change and greenhouse gas emissions makes the exploitation of renewable energy sources one of the key pathways for sustainable power generation or chemical production [...

    Recovery of Solid Waste in Industrial and Environmental Processes

    No full text
    In recent years, an alarming increase in CO2 emissions has been noticed [...

    Recovery of Solid Waste in Industrial and Environmental Processes

    No full text
    In recent years, an alarming increase in CO2 emissions has been noticed [...

    Atrioventricular node ablation and pacing for atrial tachyarrhythmias: A meta-analysis of postoperative outcomes

    Get PDF
    Atrioventricular node ablation (AVNA) and pacemaker (PM) is performed in symptomatic atrial fibrillation (AF) unresponsive to medical treatment and percutaneous ablation. This meta-analysis evaluated results after AVNA and PM
    corecore