30 research outputs found

    Mapping the Human Plasma Proteome by SCX-LC-IMS-MS

    Get PDF
    The advent of on-line multidimensional liquid chromatography-mass spectrometry has significantly impacted proteomic analyses of complex biological fluids such as plasma. However, there is general agreement that additional advances to enhance the peak capacity of such platforms are required to enhance the accuracy and coverage of proteome maps of such fluids. Here, we describe the combination of strong-cation-exchange and reversed-phase liquid chromatographies with ion mobility and mass spectrometry as a means of characterizing the complex mixture of proteins associated with the human plasma proteome. The increase in separation capacity associated with inclusion of the ion mobility separation leads to generation of one of the most extensive proteome maps to date. The map is generated by analyzing plasma samples of five healthy humans; we report a preliminary identification of 9087 proteins from 37,842 unique peptide assignments. An analysis of expected false-positive rates leads to a high-confidence identification of 2928 proteins. The results are catalogued in a fashion that includes positions and intensities of assigned features observed in the datasets as well as pertinent identification information such as protein accession number, mass, and homology score/confidence indicators. Comparisons of the assigned features reported here with other datasets shows substantial agreement with respect to the first several hundred entries; there is far less agreement associated with detection of lower abundance components

    Methodische Entwicklung der MALDI-TOF-Massenspektrometrie für Grenzbereiche der Makromolekülanalytik

    No full text
    Ziel dieser Arbeit war die methodische Entwicklung der Matrix-unterstützten Laserdesorptions/Ionisations- (MALDI-) Time-of-Flight- (TOF-) Massenspektrometrie (MS) zur Charakterisierung von Makromolekülen. Durch geeignete Experimente und unter Berücksichtigung der Ergebnisse ergänzender analytischer Methoden wurden neue Möglichkeiten der MALDI-TOF-MS-Methode erarbeitet, deren bisherige Grenzen genauer definiert und auf Basis eines besseren Verständnisses der limitierenden Faktoren in vielen Fällen auch überwunden.Die MALDI-Probenpräparation gestaltet sich generell sehr komplex. Es konnte gezeigt werden, dass die lösungsmittelfreie Probenpräparation die MALDI-Analytik in der Art verbessert, dass erzielte Ergebnisse qualitativ (z.B. Auflösung, Genauigkeit) und quantitativ (z.B. Reproduzierbarkeit) zuverlässiger sind. Wichtige Vorteile der lösungsmittelfreien MALDI-TOF-MS konnten bei einem breiten Spektrum unterschiedlicher Analyten herausgearbeitet werden. Fragmentierungslabile Analyte waren charakterisierbar, da weniger Laserleistung für den Desorptionsschritt in das Probengemisch eingebracht werden musste. Oxidationslabile bzw. thermolabile Substanzen (z.B. Pigmente) konnten charakterisiert werden, da auf den Löseschritt verzichtet werden konnte, der zu unerwünschten Veränderungen des Analyten führen kann. Generell konnte gezeigt werden, dass diese Probenpräparation geeignet ist, um schwer- und unlösliche Substanzen wie z.B. Poly(dithiathianthren)e und Poly(fluoren)e zu charakterisieren. Entmischungseffekte (z.B. bei Poly(etherimid)en und Poly(dimethylsiloxan)en), die in der konventionellen Probenpräparation während des Verdampfungsschrittes des Lösungsmittels zu einer inhomogenen Kristallisation des MALDI-Probengemisches führen, können überwunden werden, da vollständig auf Lösungsmittel verzichtet wird. So konnten beispielsweise nur durch den gezielten Einsatz der lösungsmittelfreien MALDI-TOF-MS Polystyrol-Proben analysiert werden, bei denen trotz optimierter Bedingungen die lösungsmittelbasierende MALDI-TOF-MS aufgrund unerwünschter Lösungsmitteleinflüsse fälschliche Ergebnisse lieferte. Die lösungsmittelfreie Probenpräparation ist eine wichtige Ergänzung zur Charakterisierung von Makromolekülen und erschließt neue Bereiche der Analytik, insbesondere bei unlöslichen Verbindungen und bei Analyt Matrix-Entmischungsphänomenen. Das bisherige Verständnis des zugrundeliegenden MALDI-Prozesses postuliert den homogenen Einbau des Analyten in den Matrixkristall. Die äußerst positiven experimentellen Ergebnisse der lösungsmittelfreien MALDI-TOF-MS widersprechen jedoch dieser Modellvorstellung, da bei der angewendeten Probenpräparation eine Homogenisierung auf molekularer Ebene auszuschließen ist. Durch die lösungsmittelfreie MALDI-TOF-MS am Modellanalyten Cytochrom C konnte nachgewiesen werden, dass der Einbau eines Analyten in einen Matrixkristall nicht zwingend notwendig, sondern aufgrund der erhöhten einzubringenden Laserleistung sogar eher von Nachteil ist. Der MALDI-Prozess verläuft umso effektiver, je geringer die (Rest)-Kristallinität und je inniger der Kontakt zwischen Analyt und Matrix sind. Methodische Aspekte der Fragmentionenanalyse wurden zunächst an einfachen Homopolymeren erarbeitet. Durch den gezielten Einsatz der MALDI-Fragmentionenanalytik konnte im Folgenden z.B. erstmals direkt die Sequenzanalyse eines statistischen Copolymers und eines Triblockcopolymers durchgeführt werden. Abschließend wurden bei anwendungsorientierten Untersuchungen zur Charakterisierung problematischer Analyten mittels MALDI-TOF-MS zunächst die individuellen Schwachstellen festgelegt. Durch geeignete Probenpräparations- und Messbedingungen wurde dann die MALDI-TOF-MS-Methode zur direkten Analyse schwer charakterisierbarer, labiler bzw. unlöslicher Analyten und Substanzgemische ermöglicht (z.B. Dendrimere, Polyzyklische Aromatische Kohlenwasserstoffe, umweltrelevantes Poly(vinylpyrrolidon)). Dabei wurden qualitative und quantitative Aspekte berücksichtigt. Außerdem wurden die analytischen Möglichkeiten und Limitierungen zur Charakterisierung von supramolekularen Komplexen anhand geeigneter Modellsysteme (z.B. Cyclodextrine) ermittelt

    High-Throughput Solvent Assisted Ionization <i>Inlet</i> for Use in Mass Spectrometry

    No full text
    In this work we developed a multiplexed analysis platform providing a simple high-throughput means to characterize solutions. Automated analyses, requiring less than 5 s per sample without carryover and 1 s per sample, accepting minor cross contamination, was achieved using multiplexed solvent assisted ionization <i>inlet</i> (SAII) mass spectrometry (MS). The method involves sequentially moving rows of pipet tips containing sample solutions in close proximity to the inlet aperture of a heated mass spectrometer inlet tube. The solution is pulled from the container into the mass spectrometer inlet by the pressure differential at the mass spectrometer inlet aperture. This sample introduction method for direct injection of solutions is fast, easily implemented, and widely applicable, as is shown by applications ranging from small molecules to proteins as large as carbonic anhydrase (molecular weight ca. 29 000). MS/MS fragmentation is applicable for sample characterization. An <i>x</i>,<i>y</i>-stage and common imaging software are incorporated to map the location of components in the sample wells of a microtiter plate. Location within an <i>x</i>,<i>y</i>-array of different sample solutions and the relative concentration of the sample are displayed using ion intensity maps

    Matrix assisted ionization mass spectrometry in targeted protein analysis – an initial evaluation

    No full text
    Rationale Matrix‐assisted ionization (MAI) is a relatively new ionization technique for analysis by mass spectrometry (MS). The technique is simple and has been shown to be less influenced by matrix effects than e.g. electrospray ionization (ESI). These features are of interest in the targeted analysis of proteins from biological samples. Methods Targeted protein determination by MAI‐MS was evaluated using a triple quadrupole mass analyzer equipped with a stripped nanoESI source in selected reaction monitoring (SRM) mode. The proteins were analyzed using the bottom‐up approach with stable isotopic labeled peptides as internal standards (IS). The MAI matrix was 3‐nitrobenzonitrile dissolved in acetonitrile. Aqueous sample and matrix solution were mixed in a 1:3 volume ratio. One microlitre of the dried matrix/analyte sample was introduced into the inlet of the mass spectrometer where ionization commences. Results SRM settings established for ESI‐SRM‐MS of the peptides here investigated were applicable in MAI‐SRM‐MS for all evaluated peptides except one that is poorly soluble in water. Addition of IS provided efficient correction at most levels (relative standard deviation (RSD) ≤28% (except lowest digest level), r2 ≥ 0.995). This was also true for the more complex biological matrices, diluted urine (1:1; RSD = 20% a synthetic peptide, NLLGLIEAK) and diluted digested serum (1:100; RSD = 7% digested cytochrome C). Biological matrix influenced the signal intensity unless sufficiently diluted. Conclusions The results demonstrate that MAI‐SRM‐MS has promising potential in targeted protein determination by the bottom‐up approach because of its simplicity, ease of use, and speed. However, more data is needed to confirm the results prior to application in a clinical setting

    New Ionization Method for Analysis on Atmospheric Pressure Ionization Mass Spectrometers Requiring Only Vacuum and Matrix Assistance

    No full text
    Matrix assisted ionization <i>vacuum</i> (MAIV) is a new ionization method that does not require high voltages, a laser beam, or applied heat and depends only the proper matrix, 3-nitrobenzonitrile (3-NBN), and the vacuum of the mass spectrometer to initiate ionization. Analyte ions of volatile as well as nonvolatile compounds are formed by simply exposing the matrix–analyte to the vacuum of a mass spectrometer. The reduced pressure at the inlet of an atmospheric pressure ionization mass spectrometer suffices to produce analyte ions, but unlike the previously reported matrix assisted ionization <i>inlet</i> method, with MAIV, heating the inlet is not necessary. Singly and multiply charged ions are formed similar to electrospray ionization but from a surface. Mass spectrometers in which a heated inlet tube is not available can be used for ionization using the 3-NBN matrix. We demonstrate rapid, high-sensitivity analyses of drugs, peptides, and proteins in the low femtomole range. The potential for high-throughput analyses is shown using multiwell plates and paper strips

    Matrix-Assisted Ionization Vacuum for High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometers

    No full text
    Matrix-assisted ionization vacuum (MAIV) produces charge states similar to electrospray ionization (ESI) from the solid state without requiring high voltage or added heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no laser is needed and abundant multiply charged ions are produced from molecules having multiple basic sites such as proteins. Here we introduce simple modifications to the commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to perform MAIV from both intermediate and atmospheric pressure. The multiply charged ions are shown for the proteins bovine insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first examples of MAIV operating at pressures as low as 10<sup>–6</sup> mbar in an FT-ICR mass spectrometer source, and the expected mass resolving power of 100000 to 400000 is achieved. Identical protein charge states are observed with and without laser ablation indicating minimal, if any, role of photochemical ionization for the compounds studied

    Laserspray Ionization Imaging of Multiply Charged Ions Using a Commercial Vacuum MALDI Ion Source

    No full text
    This is the first report of imaging mass spectrometry (MS) from multiply charged ions at vacuum. Laserspray ionization (LSI) was recently extended to applications at vacuum producing electrospray ionization-like multiply charged ions directly from surfaces using a commercial intermediate pressure matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) MS instrument. Here, we developed a strategy to image multiply charged peptide ions. This is achieved by the use of 2-nitrophloroglucinol as matrix for spray deposition onto the tissue section and implementation of “soft” acquisition conditions including lower laser power and ion accelerating voltages similar to electrospray ionization-like conditions. Sufficient ion abundance is generated by the vacuum LSI method to employ IMS separation in imaging multiply charged ions obtained on a commercial mass spectrometer ion source without physical instrument modifications using the laser in the commercially available reflection geometry alignment. IMS gas-phase separation reduces the complexity of the ion signal from the tissue, especially for multiply charged relative to abundant singly charged ions from tissue lipids. We show examples of LSI tissue imaging from charge state +2 of three endogenous peptides consisting of between 1 and 16 amino acid residues from the acetylated <i>N</i>-terminal end of myelin basic protein: mass-to-charge (<i>m</i>/<i>z</i>) 795.81 (+2) molecular weight (MW) 1589.6, <i>m</i>/<i>z</i> 831.35 (+2) MW 1660.7, and <i>m</i>/<i>z</i> 917.40 (+2) MW 1832.8
    corecore